# *MAT_002 (ORTHOTROPIC_ELASTIC)

LS-DYNA Input Interface KeywordThis model expresses a simple orthotropic elastic material.

## Format

(1) (2) (3) (4) (5) (6) (7) (8)
*MAT_002 or *MAT_ORTHOTROPIC_ELASTIC
mat_ID ${\rho }_{i}$ E11 E22 E33 υ12
G12 G23 G31 AOPT
A1 A2 A3
D1 D2 D3

## Definition

Field Contents SI Unit Example
mat_ID Material identifier

(Integer)

${\rho }_{i}$ Initial density

(Real)

$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$
E11 Young's modulus in direction 1.

(Real)

$\left[\text{Pa}\right]$
E22 Young's modulus in direction 2.

(Real)

$\left[\text{Pa}\right]$
E33 Young's modulus in direction 3.

(Real)

$\left[\text{Pa}\right]$
υ12 Poisson's ratio.

(Real)

G12 Shear modulus in direction 12.

(Real

$\left[\text{Pa}\right]$
G23 Shear modulus in direction 23.

(Real

$\left[\text{Pa}\right]$
G31 Shear modulus in direction 31.

(Real

$\left[\text{Pa}\right]$
AOPT Choice of orthotropy axis
= 2
orthotropy axis determined by A1, A2, A3, D1, D2, D3
< 0
AOPT is number of *DEFINE_COORDINATE_* to define orthotropic system

(Integer)

A1, A2, A3 First orthotropy direction vector for AOPT = 2

(Real)

D1, D2, D3 With A1, A2, A3 determines 12 planes of orthotropy for AOPT = 2

(Real)