# *CONSTRAINED_NODAL_RIGID_BODY

LS-DYNA Input Interface KeywordThis keyword defines a nodal rigid body.

## Format

(1) (2) (3) (4) (5) (6) (7) (8)
*CONSTRAINED_NODAL_RIGID_BODY_{OPTION}_{OPTION}_{OPTION}
rbody_ID CID NSID PNODE
If OPTION = SPC, insert the following lines.
(1) (2) (3) (4) (5) (6) (7) (8)
CMO CON1 CON2
If OPTION = INERTIA, insert the following lines.
(1) (2) (3) (4) (5) (6) (7) (8)
XCOG YCOG ZCOG TM node_ID
IXX IXY IXZ IYY IYZ IZZ
VTX VTY VTZ VRX VRY VRZ

## Definition

Field Contents SI Unit Example
OPTION
SPC
INERTIA
rbody_ID Nodal rigid body identifier

(Integer)

CID Local coordinate system identifier

(Integer)

NSID Nodal set identifier

(Integer)

PNODE Optional master node

(Integer)

CMO Option for the constraint of the center of mass
= -1
Constraints are applied in the local coordinate system
= 0 (Default)
No constraints
= 1
Constraints are applied in the global coordinate system

(Integer)

CON1 If CMO = 1, then Displacement constraint direction.
= 0
No constraints
= 1
X translation
= 2
Y translation
= 3
Z translation
= 4
X and Y translation
= 5
Y and Z translation
= 6
Z and X translation
= 7
X, Y, and Z translation

If CMO = -1, local coordinate system identifier for the constraints defined in CON2.

(Integer)

CON2 If CMO = 1, Rotation constraint direction.
= 0
No constraints
= 1
X rotation
= 2
Y rotation
= 3
Z rotation
= 4
X and Y rotation
= 5
Y and Z rotation
= 6
Z and X rotation
= 7
X, Y, and Z rotation
If CMO:
= -1
Local constraint direction
= 0
Free degree of freedom
= 1
Constrained degree of freedom.

(6 Booleans)

Example: 101 111 means the x and z translations, as well as all rotations are fixed; the y translation is free.

(Integer)

XCOG, YCOG, ZCOG Coordinates of part center of gravity.

(Real)

$\left[\text{m}\right]$
TM Mass of rigid part.

(Real)

$\left[\text{kg}\right]$
node_ID Node number for part center of gravity.

(Integer)

IXX, IXY, IXZ, IYY, IYZ, IZZ Inertia tensor of the rigid body.

(Real)

$\left[\text{kg}\cdot {\text{m}}^{\text{2}}\right]$
VTX, VTY, VTZ Initial translational velocity applied to the rigid component.

Default = 0 (Real)

$\left[\frac{\text{m}}{\text{s}}\right]$
VRX, VRY, VRZ Initial rotational velocity applied to the rigid component.

Default = 0 (Real)

$\left[\frac{\text{rad}}{\text{s}}\right]$