/MAT/LAW72 (HILL_MMC)

Block Format Keyword This law describes the anisotropic Hill material with a modified Mohr fracture criteria. This law is available for shell and solid.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW72/mat_ID/unit_ID or /MAT/HILL_MMC/mat_ID/unit_ID
mat_title
ρ i                
E v        
σy0 εp0 n F G
H N L M  
C1 C2 C3 m Dc

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
E Initial Young's modulus.

(Real)

[ Pa ]
v Poisson's ratio.

(Real)

 
σ y 0 Initial yield stress.

Default = 1030 (Real)

[ Pa ]
ε p 0 Initial plastic strain.

(Real)

 
n Exponent for the isotropic function for the swift hardening:

σ y = σ y 0 ( ε p + ε p 0 ) n

It is also used as an exponent in the MMC failure equations. 2

(Real)

 
F, G, H, L, M, N Six HILL Materials anisotropic parameters.

(float)

 
C1 First parameter for MMC fracture model.

(Real)

 
C2 Second parameter for MMC fracture model.

(Real)

[ Pa ]
C3 Third parameter for MMC fracture model.

(Real)

 
m Exponent for the softening function. 3

(Real)

 
Dc Critical damage.
= 1 (Default)
The element is deleted when damage reaches one.
> 1
The yield stress is modified by using a softening function. 3
If damage reaches the critical damage value, the element is deleted.

(Real)

 

Example (Metal)

Material softening and failure are considered in the material example. Using the MMC parameters C1, C2, and C2 the failure strain in a uniaxial tension test is calculated to be 0.98. In a uniaxial tension test with m=0.5, the material starts to soften at 0.98 until 0.98 × D c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaGaai OlaiaaiMdacaaI4aGaey41aqRaamiramaaBaaaleaacaWGJbaabeaa aaa@3E4D@ is reached.


Figure 1.
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                   g                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW72/1/1
Metal
#              RHO_I
              0.0028
#                  E                  nu
              200E+3                 0.3
#               Sig0                Eps0                   n                   F                   G
                1276             1.63E-3               0.265                 0.5                 0.5
#                  H                   N                   L                   M
                 0.5                 1.5                   0                   0
#                 C1                  C2                  C3                   m                  Dc
                0.12                 720               1.095                 0.5                 1.1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. 3D equivalent Hill stress:(1)
    f = F ( σ yy σ zz ) 2 + G ( σ zz σ xx ) 2 + H ( σ xx σ yy ) 2 + 2 L σ yz 2 + 2 M σ zx 2 + 2 N σ xy 2
    For shell element, take:(2)
    f = F σ yy 2 + G σ xx 2 + H ( σ xx σ yy ) 2 + 2 N σ xy 2
  2. MMC fracture criteria:(3)
    D = 0 ε p d ε p ε f ( θ , η )
    • Anisotropic 3D model(4)
      ε f ( θ , η ) = { σ y 0 C 2 [ C 3 + 3 2 3 ( 1 C 3 ) ( sec ( θ π 6 ) 1 ) ] [ 1 + C 1 2 3 cos ( θ π 6 ) + C 1 ( η + 1 3 ) sin ( θ π 6 ) ] } 1 n

      While,

      θ is Lode angle θ = 1 2 π ar cos ζ

      with Lode angle parameter ζ = 27 2 J 3 σ VM 3

      J 3 is the third invariant of the deviatoric stress.

      η is stress triaxiality with η = 1 3 ( σ xx + σ yy + σ zz ) σ VM

    • 2D Anisotropic Model(5)
      ε f ( θ , η ) = { σ y 0 C 2 f 3 [ ( 1 + C 1 2 3 f 1 ) + C 1 ( η + f 2 3 ) ] } 1 n
      with,(6)
      f 1 = cos { 1 3 arcsin [ 27 2 η ( η 2 1 3 ) ] }
      (7)
      f 2 = sin { 1 3 arcsin [ 27 2 η ( η 2 1 3 ) ] }
      (8)
      f 3 = C 3 + 3 2 3 ( 1 C 3 ) ( 1 f 1 1 )
  3. Fracture and damage with MMC fracture criteria:
    • When D = 1: fracture initiate
    • By 1 < D < Dc: the yield stress is multiplied by softening function β to reduce the deformation resistance.

      σ y = β σ y 0 ( ε p + ε p 0 ) n with β = ( D c D D c 1 ) m 0 < β < 1

    • If DDc, the element is deleted.
    • The exponent m is used to describe the softening behavior. It is recommended to use m > 0.

      If 0 < m < 1, then the softening curve is convex.

      If m > 1, then the softening curve is concave. The softening is between ε f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOzaaqabaaaaa@3A25@ and D c ε f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaadogaaeqaaOGaeyyXICTaeqyTdu2aaSbaaSqaaiaadAga aeqaaaaa@3E56@ . Once the plastic strain is reached D c ε f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaadogaaeqaaOGaeyyXICTaeqyTdu2aaSbaaSqaaiaadAga aeqaaaaa@3E56@ (in this case D > D c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey Opa4JaamiramaaBaaaleaacaWGJbaabeaaaaa@3B15@ ), then the element is deleted.


      Figure 2.


      Figure 3.
  4. It is possible to display user variables in animation files (with Engine /ANIM/Eltyp/Restype) and in Time history file (with Starter /TH/SHEL and /TH/BRIC):
    • USER1: Plastic strain
    • USER2: Damage value