/MAT/LAW87 (BARLAT2000)

Block Format Keyword This elasto-plastic law is developed for anisotropic materials, especially aluminum alloys.

Yield stresses can be defined either by user-defined functions (plastic strain vs. stress) or analytically by a combination of Swift-Voce model. The model is based on Barlat YLD2000 criterion. 1

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW87/mat_ID/unit_ID or /MAT/BARLAT2000/mat_ID/unit_ID
mat_title
ρ i                
E ν  Iflag VP c p
If Ifit =0, insert the following three lines
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 1 α 2 α 3 α 4 Ifit  
α 5 α 6 α 7 α 8  
Blank Line
If Ifit =1, insert the following three lines
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
σ 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ σ 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ σ 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ σ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3983@ Ifit  
r 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ r 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ r 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ r b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaWGIbaapaqabaaaaa@38B7@  
Blank
Input for material yield and hardening
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
  a α sv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadohacaWG2baabeaaaaa@39B5@ n Fcut Fsmooth Nrate
A ε 0 Q B K0
Read only if Nrate > 0 (Each function per line):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fct_IDi   Fscalei ε ˙ i    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
E Young's modulus

(Real)

[ Pa ]
ν Poisson's ratio

(Real)

 
Iflag Yield stress definition flag.
= 0 (Default)
Tabulated input and function numbers defined in Nrate.
= 1
Swift-Voce analytic formulation and then Nrate = 0.

(Integer)

 
VP Strain rate choice flag. 4
= 0 (Default)
Strain rate effect on yield stress depends on the total strain rate.
= 1
Strain rate effect on yield depends on the plastic strain rate.
In this case, there is no strain rate filtering, so Fsmooth and Fcut are not used.

(Integer)

 
Ifit Material parameter fit flag.
=0 (Default)
Input Barlat parameters in α 1 through α 8 .
=1
Barlat parameters are calculated from the test data which is input as σ 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ , σ 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ , σ 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ , σ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3983@ , r 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ , r 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ , r 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ , r b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaWGIbaapaqabaaaaa@38B7@ .
 
α i Barlat material parameters with i=1~8. 1

(Real)

 
σ 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ Yield strength in 00 direction (rolling direction). [ Pa ]
σ 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ Yield strength in 45 direction. [ Pa ]
σ 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@3A10@ Yield strength in 90 direction. [ Pa ]
σ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3983@ Yield strength biaxial loading. [ Pa ]
r 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ Lankford r-value in 00 direction (rolling direction).  
r 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ Lankford r-value in 45 direction.  
r 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaa@3944@ Lankford r-value in 90 direction.  
r b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaWGIbaapaqabaaaaa@38B7@ Lankford r-value in biaxial loading.  
a Exponent in yield function. 1

Default = 2 (Integer)

 
α s v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadohacaWG2baabeaaaaa@39B5@ Swift Voce weighting coefficient. 2
= 1
Swift hardening law.
= 0
Voce hardening law.

Default = 0.0 (Real)

 
Q Voce hardening coefficient.

(Real)

[ Pa ]
K0 Voce hardening parameter.

(Real)

[ Pa ]
B Voce plastic strain coefficient.

Default = 0.0 (Real)

 
A Swift hardening coefficient.

(Real)

[ Pa ]
n Swift hardening exponent.

Default = 1.0 (Real)

 
ε 0 Swift hardening parameter.

Default = 0.00 (Real)

 
Fsmooth Smooth strain rate option flag. 3
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering, Appendix: Filtering.

Default = 1030 (Real)

[Hz]
c Cowper Seymonds reference strain rate.

(Real)

[ 1 s ]
p Cowper Seymonds strain rate exponent. 4

(Real)

 
Nrate Number of yield functions. 2

Nrate > 0 used only if Iflag = 0.

(Integer)

 
fct_IDi Yield stress vs plastic strain identifier.

(Integer)

 
Fscalei Scale factor for ordinate for fct_IDi.

Default = 1.0 (Real)

[ Pa ]
ε ˙ i Strain rate i corresponding to fct_IDi.

If VP =0, total strain rate for fct_IDi.

If VP =1, plastic strain rate for fct_IDi.

Default = 1.0 (Real) 5

[ 1 s ]

Example 1 (with Barlat parameters input Ifit=0)

In this example use Barlat parameters input (Ifit=0) and tabulated yield stress-strain curve input (Iflag=0)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW87/1/1
Steel 
#              RHO_I
              7.8E-6                   0
#                  E                  Nu     IFlag        VP             coeff_c               exp_p              
                 210                 0.3         0         1             4.15401                3.57             
#                 A1                  A2                  A3                  A4 IFlag_fit
                 1.0                 1.0                 1.0                 1.0         0
#                 A5                  A6                  A7                  A8
                 1.0                 1.0                 1.0                 1.0
#Blank line

#              exp_a               ALPHA                NEXP                Fcut   Fsmooth     NRATE
                   2                   0                   0                             1         1
#             ASWIFT                EPSO               QVOCE                BETA                  KO
                   0                   0                   0                   0                   0
#  func_id                        YSCALE         strain rate
         4                           1.5                   1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/4
Mat_Curev Quasi-static
#                  X                   Y
                   0                  .3
               0.007                  .5
                0.05                  .7
                 0.1                 .75
                 0.3                  .9
                   1                 1.2				 
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Example 2 (with experiment data input Ifit=1)

Here Ifit=1 is used to input material experiment data of yield strength and Lankford r-value in 00, 45, 90 directions and in biaxial loading. Then related Barlat parameters will be automatically fitted and used. Swift-voce parameters input used with Iflag=1.
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                   g                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW87/1/1
ALU
#              RHO_I
              2.7E-3                   0
#                  E                  Nu     IFlag        VP             coeff_c               exp_p 
               70000                 0.3         1
#              sig00               sig45               sig90                sigb     I_fit
          133.179899          133.102756          132.330693          162.330301         1
#                r00                 r45                 r90                  rb
         0.703242569         0.486264221         0.865336191         0.546807587
#empty line 

#              exp_a               ALPHA                NEXP                Fcut   Fsmooth     NRATE
                   8                0.55                0.21                             1         0
#             ASWIFT                EPSO               QVOCE                BETA                  KO
                415.             0.00220               174.7               11.19               132.4
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The yield function is expressed as:(1)
    f = σ ¯ σ y
    (2)
    σ ¯ =   1 2 1 a ( φ ( X ) + φ ( X ) )   1 a
    (3)
    φ ( X ) = | X 1 X 2 | a  
    (4)
      φ ( X ) = | 2 X 2 + X 1 | a + | 2 X 1 + X 2 | a
    X ' and X " denote the principal values of the tensors X ' and X " which are a linear transformation of the stress deviator, which leads to:(5)
    φ ( X ) =   [ ( X x x X y y ) 2 + 4 ( X x y ) 2 ] a 2  
    (6)
      φ ( X ) = [ 3 2 ( X x x X y y ) + 1 2 ( X x x X y y ) 2 + 4 ( X x y ) 2 ] a + [ 3 2 ( X x x X y y ) 1 2 ( X x x X y y ) 2 + 4 ( X x y ) 2 ] a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaGGGcGafqOXdOMbayaadaqadaWdaeaapeGabmiwayaagaaa caGLOaGaayzkaaGaeyypa0ZaamWaa8aabaWdbmaalaaapaqaa8qaca aIZaaapaqaa8qacaaIYaaaamaabmaapaqaa8qaceWGybGbayaapaWa aSbaaSqaa8qacaWG4bGaamiEaaWdaeqaaOWdbiabgkHiTiqadIfaga Gba8aadaWgaaWcbaWdbiaadMhacaWG5baapaqabaaak8qacaGLOaGa ayzkaaGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaa WaaOaaa8aabaWdbmaabmaapaqaa8qaceWGybGbayaapaWaaSbaaSqa a8qacaWG4bGaamiEaaWdaeqaaOWdbiabgkHiTiqadIfagaGba8aada WgaaWcbaWdbiaadMhacaWG5baapaqabaaak8qacaGLOaGaayzkaaWd amaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI0aWaaeWaa8aaba WdbiqadIfagaGba8aadaWgaaWcbaGaamiEaiaadMhaaeqaaaGcpeGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqaaaGccaGLBbGaay zxaaWdamaaCaaaleqabaWdbiaadggaaaGccqGHRaWkaeaadaWadaWd aeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaWaaeWaa8 aabaWdbiqadIfagaGba8aadaWgaaWcbaWdbiaadIhacaWG4baapaqa baGcpeGaeyOeI0IabmiwayaagaWdamaaBaaaleaapeGaamyEaiaadM haa8aabeaaaOWdbiaawIcacaGLPaaacqGHsisldaWcaaWdaeaapeGa aGymaaWdaeaapeGaaGOmaaaadaGcaaWdaeaapeWaaeWaa8aabaWdbi qadIfagaGba8aadaWgaaWcbaWdbiaadIhacaWG4baapaqabaGcpeGa eyOeI0IabmiwayaagaWdamaaBaaaleaapeGaamyEaiaadMhaa8aabe aaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiab gUcaRiaaisdadaqadaWdaeaapeGabmiwayaagaWaaSbaaSqaaiaadI hacaWG5baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa aeqaaaGccaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaadggaaaaaaa a@835B@

    The tensors X ' and X " are linear transformations of the stress tensor:

    X = L σ     a n d     X = L σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabCiwa8aagaqba8qacqGH9aqpceWHmbWdayaafaWdbiaaho8acaGG GcGaaiiOaiaadggacaWGUbGaamizaiaacckacaGGGcGabCiwa8aaga Gba8qacqGH9aqpceWHmbGbayaacaWHdpaaaa@4603@ (7)
    L = 1 3 [ 2 α 1 α 1 0 α 2 2 α 2 0 0 0 3 α 7 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabCita8aagaqba8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaG4maaaadaWadaWdaeaafaqabeWadaaabaWdbiaaikdacqaHXo qypaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaeyOeI0IaeqyS de2damaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaaicdaa8aaba WdbiabgkHiTiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqa a8qacaaIYaGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcba Wdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiaa iodacqaHXoqypaWaaSbaaSqaa8qacaaI3aaapaqabaaaaaGcpeGaay 5waiaaw2faaaaa@5181@
    (8)
    L = 1 9 [ 2 α 3 + 2 α 4 + 8 α 5 2 α 6 α 3 4 α 4 4 α 5 + 4 α 6 0 4 α 3 4 α 4 4 α 5 + α 6 2 α 3 + 8 α 4 + 2 α 5 2 α 6 0 0 0 9 α 8 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabCita8aagaGba8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGyoaaaadaWadaWdaeaafaqabeWadaaabaWdbiabgkHiTiaaik dacqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIa aGOmaiabeg7aH9aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGHRa WkcaaI4aGaeqySde2damaaBaaaleaapeGaaGynaaWdaeqaaOWdbiab gkHiTiaaikdacqaHXoqypaWaaSbaaSqaa8qacaaI2aaapaqabaaake aapeGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHi TiaaisdacqaHXoqypaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaey OeI0IaaGinaiabeg7aH9aadaWgaaWcbaWdbiaaiwdaa8aabeaak8qa cqGHRaWkcaaI0aGaeqySde2damaaBaaaleaapeGaaGOnaaWdaeqaaa GcbaWdbiaaicdaa8aabaWdbiaaisdacqaHXoqypaWaaSbaaSqaa8qa caaIZaaapaqabaGcpeGaeyOeI0IaaGinaiabeg7aH9aadaWgaaWcba Wdbiaaisdaa8aabeaak8qacqGHsislcaaI0aGaeqySde2damaaBaaa leaapeGaaGynaaWdaeqaaOWdbiabgUcaRiabeg7aH9aadaWgaaWcba WdbiaaiAdaa8aabeaaaOqaa8qacqGHsislcaaIYaGaeqySde2damaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaaiIdacqaHXoqypa WaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaey4kaSIaaGOmaiabeg7a H9aadaWgaaWcbaWdbiaaiwdaa8aabeaak8qacqGHsislcaaIYaGaeq ySde2damaaBaaaleaapeGaaGOnaaWdaeqaaaGcbaWdbiaaicdaa8aa baWdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiaaiMdacqaHXoqypa WaaSbaaSqaa8qacaaI4aaapaqabaaaaaGcpeGaay5waiaaw2faaaaa @872F@
  2. The yield stress could be defined either by tabulated input or using the analytic Swift-Voce model.
    • If tabulated, it is possible to add total strain rate dependency by defining a number Nrate of functions
    • The analytic Swift Voce model is expressed as:(9)
      σ y = α sv [ A ( ε ¯ p + ε 0 ) n ]+( 1 α sv )[ K 0 +Q( 1exp( B ε ¯ p ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaadoha caWG2baabeaakmaadmaabaGaamyqamaabmaabaGafqyTduMbaebada WgaaWcbaGaamiCaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaaGim aaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6gaaaaakiaawU facaGLDbaacqGHRaWkdaqadaqaaiaaigdacqGHsislcqaHXoqydaWg aaWcbaGaam4CaiaadAhaaeqaaaGccaGLOaGaayzkaaWaamWaaeaaca WGlbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamyuamaabmaabaGa aGymaiabgkHiTiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0Iaam Oqaiqbew7aLzaaraWaaSbaaSqaaiaadchaaeqaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@6301@

      Where, ε ¯ p is the equivalent plastic strain.

  3. The strain rate filtering is available to smooth strain rates when tabulated input is chosen.

    List of Animation output (in /ANIM/SHELL/USRII/JJ):

    USR 1= plastic strain

    USR 2= effective stress

    USR 3= increment of plastic strain

  4. When Iflag= 1 (analytic Swift-Voce formulation is used) strain rates effect is taken into account using Cowper Symonds expression:(10)
    σ y = σ y ( 1 + ( ε ˙ c ) 1 p )

    If VP= 0: ε ˙ is the total strain rate.

    If VP = 1: ε ˙ is the plastic strain rate.

  5. When Iflag= 0 (tabulated formulation) then:

    If VP= 0: ε ˙ i is the total strain rate.

    If VP = 1: ε ˙ i is the plastic strain rate.

  6. If Ifit =1, the coefficients α i will be automatically fit in the Radioss Starter. The tensile yield strengths σ 00 , σ 45 , σ 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaGccaGG SaWdbiabeo8aZ9aadaWgaaWcbaWdbiaaisdacaaI1aaapaqabaGcca GGSaWdbiabeo8aZ9aadaWgaaWcbaWdbiaaiMdacaaIWaaapaqabaaa aa@42D8@ and Lankford ratios r 00 , r 45 , r 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaOGaaiil a8qacaWGYbWdamaaBaaaleaapeGaaGinaiaaiwdaa8aabeaakiaacY capeGaamOCa8aadaWgaaWcbaWdbiaaiMdacaaIWaaapaqabaaaaa@4074@ must be determined from uniaxial tension experiments along the rolling, diagonal and transverse directions at an amount of plastic work corresponding to a plastic strain equal to 0.2%. σ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo8aZ9aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3983@ and r b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacaWGIbaapaqabaaaaa@38B7@ should be determined from biaxial test, for the same amount of plastic strain.
1 Barlat F., Brem J.C., Yoon J.W, Chung K., Dick R.E., Lege D.J., Pourboghrat F., Choi, E. Chu S.-II, (2003), Plane stress yield function for aluminum alloy sheets part 1: Theory, International Journal of Plasticity, Volume 19, Issue 8, August, Pages 1215-1244.