/MAT/LAW76 (SAMP)

Block Format Keyword This law describes a semi-analytical elasto-plastic material using user-defined functions for the work-hardening portion for tension, compression and shear (stress as function of strain).

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW76/mat_ID/unit_ID or /MAT/SAMP/mat_ID/unit_ID
mat_title
ρ i                
E ν      
tab_IDt tab_IDc tab_IDs              
Fscalet Fscalec Fscales   XFAC
νp fct_IDpr Fscalepr Fsmooth Fcut    
εpf εpr          
fct_ID1     Fscale1          
Iform IQUAD ICONV              

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
E Initial Young's modulus.

(Real)

[ Pa ]
ν Poisson's ratio.

(Real)

 
tab_IDt Tension yield stress table identifier (stress vs. plastic tension strain with the possibility of strain rate dependency).

(Integer)

 
tab_IDc Compression yield stress table identifier (stress vs. plastic compression strain with the possibility of strain rate dependency).

(Integer)

 
tab_IDs Shear yield stress table identifier (stress vs. plastic shear strain with the possibility of strain rate dependency).

(Integer)

 
Fscalet Scale factor for ordinate (stress) for tab_IDt.

Default = 1.0 (Real)

[ Pa ]
Fscalec Scale factor for ordinate (stress) for tab_IDc.

Default = 1.0 (Real)

[ Pa ]
Fscales Scale factor for ordinate (stress) for tab_IDs.

Default = 1.0 (Real)

[ Pa ]
XFAC Scale factor for the second entry (strain rate) of the three tables (tab_IDt, tab_IDc, and tab_IDs). 6

Default = 1.0 (Real)

 
ν p Plastic Poisson's ratio

(Real)

 
fct_IDpr Plastic Poisson's ratio function identifier ( ν p vs. plastic strain).

(Real)

 
Fscalepr Scale factor for ordinate ( ν p ) in fct_IDpr.

Default = 1.0 (Real)

 
Fsmooth Smooth strain rate option flag.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering.

Default = 1030 (Real)

[Hz]
ε p f Failure plastic strain (start of element damage).

Default = 2e30 (Real)

 
ε p r Maximum plastic strain (element deleted).

Default = 2e30 (Real)

 
fct_ID1 Damage function identifier (damage vs plastic strain). 2

(Integer)

 
Fscale1 Scale factor for ordinate for fct_ID1. 2

Default = 1.0 (Real)

 
Iform Formulation flag. 4
= 0 (Default)
No associated formulation.
= 1
von Mises associated formulation.

(Integer)

 
IQUAD Yield surface flag. 3
= 0 (Default)
Yield surface is linear in the von Mises.
= 1
Yield surface is quadratic in the von Mises (recommended).

(Integer)

 
ICONV Convexity condition flag.
=0 (Default)
No treatment for material stability.
= 1
The convexity of yield stress (material stability) is assured.

(Integer)

 

Example (Material)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW76/1/1
LAW76_Material
#              RHO_I
                1E-6
#                  E                  nu
               100.0                  .3
#  TAB_IDt   TAB_IDc   TAB_IDs 
      1000      1001      1003
#           Fscale_t            Fscale_c            Fscale_s                                    XFAC 
               1.000               1.000               1.000                                   1.000
#               Nu_p  fct_IDpr           Fscale_pr   Fsmooth      Fcut
                 0.5         0                   0         1      1e30
#            EPS_f_p             EPS_r_p 
                   0                   0
#funct_ID1                                Fscale_1
         0
#    IFORM     IQUAD     ICONV
         0         0         1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/TABLE/1/1000
curve_list TENSION strain rates
         2
     10010                        1.0e-4
     10020                           1.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10010
eps_vs_sigma funct dt=1.0e-4
              0.0000             .100000
              1.0000             .200000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10020
eps_vs_sigma funct dt=1.0e-4
              0.0000             .100000
              1.0000             .200000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/TABLE/1/1001
curve_list COMPRESSION strain rates
         2
     10030                        1.0e-4
     10040                           1.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10030
eps_vs_sigma funct dt=1.0e-4
              0.0000             .200000
              1.0000             .400000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10040
eps_vs_sigma funct dt=1.0e-4
              0.0000             .200000
              1.0000             .400000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/TABLE/1/1003
curve_list SHEAR strain rates
         2
     10050                        1.0e-4
     10060                           1.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10050
eps_vs_sigma funct dt=1.0e-4
              0.0000             .050000
              0.5000             .060000
              1.0000             .065000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10060
eps_vs_sigma funct dt=1.0e-4
              0.0000             .050000
              0.5000             .060000
              1.0000             .065000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END

Comments

  1. This material is compatible with shell, thick shell and solid elements.
  2. The material damage can be modeled two ways:
    • ε p f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiaadAgaaaaaaa@3A13@ (start to damage) and ε p r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiaadkhaaaaaaa@3A1F@ (element delete)
    • Damage function fct_ID1


      If damage function fct_ID1 is used, then ε p f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiaadAgaaaaaaa@3A13@ and ε p r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiaadkhaaaaaaa@3A1F@ will be ignored.

  3. Choice of yield surface:(1)
    f = { σ V M A 0 A 1 P A 2 P 2 I Q U A D = 0 σ V M 2 A 0 A 1 P A 2 P 2 I Q U A D = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbGaey ypa0ZaaiqaceaafaqabeGabaaabaGaeq4Wdm3aaSbaaSqaaiaadAfa caWGnbaabeaakiabgkHiTiaadgeadaWgaaWcbaGaaGimaaqabaGccq GHsislcaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGzaVlaadcfacqGH sislcaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaamiuamaaCaaaleqaba GaaGOmaaaakiaaysW7caaMe8UaaGzbVlaaykW7caaMe8UaaGzaVlaa ykW7caaMe8UaamysaiaadgfacaWGvbGaamyqaiaadseacqGH9aqpca aIWaaabaGaeq4Wdm3aa0baaSqaaiaadAfacaWGnbaabaGaaGOmaaaa kiabgkHiTiaadgeadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGbb GaaGzaVlaaygW7caaMi8UaaGzaVlaaygW7caWLa8+aaSraaSqaaiaa igdaaeqaaOGaaGzaVlaadcfacqGHsislcaWGbbWaaSbaaSqaaiaaik daaeqaaOGaamiuamaaCaaaleqabaGaaGOmaaaakiaaysW7caaMf8Ua aGPaVlaaysW7caaMf8UaamysaiaadgfacaWGvbGaamyqaiaadseacq GH9aqpcaaIXaGaaGjbVlaaysW7aaaacaGL7baaaaa@85C2@
    Where,(2)
    P = σ x x + σ y y + σ z z 3
    (3)
    σ V M = 3 2 [ ( σ x x + P ) 2 + ( σ y y + P ) 2 + ( σ z z + P ) 2 + 2 σ x y 2 + 2 σ y z 2 + 2 σ x z 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaamOvaiaad2eaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqa aiaaiodaaeaacaaIYaaaamaadmaabaWaaeWaaeaacqaHdpWCdaWgaa WcbaGaamiEaiaadIhaaeqaaOGaey4kaSIaamiuaaGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaeq4Wdm3aaS baaSqaaiaadMhacaWG5baabeaakiabgUcaRiaadcfaaiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeo8aZn aaBaaaleaacaWG6bGaamOEaaqabaGccqGHRaWkcaWGqbaacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeo8aZn aaDaaaleaacaWG4bGaamyEaaqaaiaaikdaaaGccqGHRaWkcaaIYaGa eq4Wdm3aa0baaSqaaiaadMhacaWG6baabaGaaGOmaaaakiabgUcaRi aaikdacqaHdpWCdaqhaaWcbaGaamiEaiaadQhaaeaacaaIYaaaaaGc caGLBbGaayzxaaaaleqaaaaa@6BCC@

    A 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaicdaaeqaaaaa@380A@ , A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaicdaaeqaaaaa@380A@ and A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaicdaaeqaaaaa@380A@ coefficients are computed from the hardening curve given for tension, compression and shear.

    For von Mises and Drücker-Prager yield surface, IQUAD=0 can be used. However, in some situations, it can be difficult for Radioss to fit the A 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaicdaaeqaaaaa@380A@ , A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaicdaaeqaaaaa@380A@ and A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaicdaaeqaaaaa@380A@ coefficients when using IQUAD=0 and an easier fit is obtained by using IQUAD=1.

  4. Choice of plasticity formulation:
    • For the no associated plasticity formulation, Iform=0:

      The plastic flow rule function, g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbaaaa@374A@ , is used to describe plastic strain increment d ε p = d λ g σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaC yTdmaaBaaaleaacaWGWbaabeaakiabg2da9iaadsgacqaH7oaBdaWc aaqaaiabgkGi2kaadEgaaeaacqGHciITcaWHdpaaaaaa@426D@ . In this case g σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai abgkGi2kaadEgaaeaacqGHciITcaWHdpaaaaaa@3B75@ is not normal to the yield surface f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzaaaa@36DF@ and g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbaaaa@374A@ is not associated with the yield surface f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzaaaa@36DF@ .



      Figure 1.
      The plastic flow rule, g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbaaaa@374A@ , is given by: (4)
      g = σ V M 2 + α P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGNbGaey ypa0ZaaOaaaeaacqaHdpWCdaqhaaWcbaGaamOvaiaad2eaaeaacaaI YaaaaOGaey4kaSIaeqySdeMaamiuamaaCaaaleqabaGaaGOmaaaaae qaaaaa@4103@

      Materials like soil or rock usually use the no associated plasticity formulation, Iform=0.

    • For the associated plasticity: Iform= 1, g = f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2 da9iaabAgaaaa@38D1@
      In this case, the plastic strain rate is a function of the normal vector of the yield surface f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzaaaa@36DF@ . Materials like metal usually use the associated plasticity formulation.(5)
      d ε p = d λ f σ = d λ g σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaC yTdmaaBaaaleaacaWGWbaabeaakiabg2da9iaadsgacqaH7oaBdaWc aaqaaiabgkGi2kGacAgaaeaacqGHciITcaWHdpaaaiabg2da9iaads gacqaH7oaBdaWcaaqaaiabgkGi2kGacEgaaeaacqGHciITcaWHdpaa aaaa@4B28@


      Figure 2.
  5. The convexity condition flag ICONV=1 is used to ensure stability in the material law by making sure the yield surface is convex. The yield surface may be hyperbolic for low shear yield values in tension and compression. In this case there is no unique solution and Radioss will update (increase) the shear yield stress to ensure convexity of the yield surface. Therefore, the shear yield stress may be different from input curve.
  6. The tables should have a maximum dimension equal to 2. The first entry is the plastic strain and the second entry is the strain rate.
  7. User variables USR2, USR3, USR4 are used to output plastic strain components in tension, compression and shear. The output is available both for shells and solids in time history and in animation file.