/MAT/LAW64 (UGINE_ALZ)
Block Format Keyword This law describes the Ugine & Alz trip steel material. This material law can be used only with shell elements.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/MAT/LAW64/mat_ID/unit_ID or /MAT/UGINE_ALZ/mat_ID/unit_ID  
mat_title  
${\rho}_{i}$  
E  $\nu $  C_{p}  
D  n  M_{d}  V_{0}  V_{m}  
fct_ID_{0}  fct_ID_{1}  Fscale_{0}  Fscale_{1}  T_{0} 
Definitions
Field  Contents  SI Unit Example 

mat_ID  Material
identifier (Integer, maximum 10 digits) 

unit_ID  Unit Identifier (Integer, maximum 10 digits) 

mat_title  Material
title. (Character, maximum 100 characters) 

${\rho}_{i}$  Initial
density. (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{3}}\right]$ 
E  Initial Young's
modulus. (Real) 
$\left[\text{Pa}\right]$ 
$\nu $  Poisson's
ratio. (Real) 

C_{p}  Specific heat
capacity. Default = 10^{30} (Real) 
$\left[\frac{\text{J}}{\text{kg}\cdot \text{K}}\right]$ 
D  Material parameter
1. (Real) 

n  Material parameter
2. (Real) 

M_{d}  Limit martensite
transformation temperature. (Real) 
$\left[\text{K}\right]$ 
V_{0}  Material
parameter. (Real) 

V_{m}  Constant martensite
fraction for second yield stress function 0 <
V_{m} ≤
1. (Real) 

fct_ID_{0}  Yield stress function
identifier for 0 martensite fraction. (Integer) 

fct_ID_{1}  Yield stress function
identifier for V_{m}
martensite fraction. (Integer) 

Fscale_{0}  Scale factor for yield
function for
fct_ID_{0}. (Real) 
$\left[\text{Pa}\right]$ 
Fscale_{1}  Scale factor for yield
function for fct_ID_{1}. (Real) 
$\left[\text{Pa}\right]$ 
T_{0}  Initial
temperature. (Real) 
$\left[\text{K}\right]$ 
Example (Steel)
#RADIOSS STARTER
#12345678910
/UNIT/1
unit for mat
Mg mm s
#12345678910
# 2. MATERIALS:
#12345678910
/MAT/LAW64/1/1
Steel
# RHO_I
7.8E9
# E Nu Cp
210000 .3 460000000
# D n Md V0 Vm
4 3.5 356 .2 .6
# func_ID0 func_ID1 Fscale0 Fscale1 T0
1 2 1 1 323
#12345678910
# 3. FUNCTIONS:
#12345678910
/FUNCT/1
function_1
# X Y
0 250
.001 350
.5 1100
#12345678910
/FUNCT/2
function_2
# X Y
0 930
.001 1000
.5 1500
#12345678910
#ENDDATA
/END
#12345678910
Comments
 Martensite fraction:
(1) $${\mathrm{V}}_{m}\left({\epsilon}_{p},T\right)={V}_{m}^{\text{max}}\left(T\right)\cdot \left(1{e}^{\left(D\cdot {\epsilon}_{p}\right)n}\right)$$(2) $${\mathrm{V}}_{m}^{max}\left(T\right)={V}_{0}\mathit{Ln}({M}_{d}T+1)$$if(3) $$T<{M}_{d}$$(4) $${\mathrm{V}}_{m}^{max}(T)=0$$if(5) $$T>{M}_{d}$$  Mechanical behavior:
The yield plastic stress is computed by linear interpolation between two curves fct_ID_{1} and fct_ID_{0}.
 The temperature is computed assuming
the adiabatic condition (by default the condition is isothermal with
C_{p} =
10^{30}):
(6) $$T={T}_{0}+\frac{{E}_{\mathit{int}}}{\rho {C}_{p}(\mathit{Volume})}$$Where, E_{int} is the internal energy of the element.