/MAT/LAW63 (HANSEL)
Block Format Keyword This law describes the trip steel plastic material. This material law can be used only with shell elements.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/MAT/LAW63/mat_ID/unit_ID or /MAT/HANSEL/mat_ID/unit_ID  
mat_title  
${\rho}_{i}$  
E  $\nu $  C_{p}  
A  B  Q  C  D  
P  A_{HS}  B_{HS}  m  n  
K_{1}  K_{2}  $\text{\Delta}H$  V_{m0}  ${\dot{\epsilon}}_{0}$  
T_{0}  H_{l}  $\eta $ 
Definitions
Field  Contents  SI Unit Example 

mat_ID  Material
identifier. (Integer, maximum 10 digits) 

unit_ID  Unit Identifier. (Integer, maximum 10 digits) 

mat_title  Material
title. (Character, maximum 100 characters) 

${\rho}_{i}$  Initial
density. (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{3}}\right]$ 
E  Initial Young's
modulus. (Real) 
$\left[\text{Pa}\right]$ 
v  Poisson's
ratio. (Real) 

C_{p}  Specific heat
capacity. Default = 10^{30} (Real) 
$\left[\frac{J}{kgK}\right]$ 
A  Material parameter
1. (Real) 

B  Material parameter 2.
5 Default = 1.0 (Real) 

Q  Material parameter
3. (Real) 
$\left[\text{K}\right]$ 
C  Material parameter
4. (Real) 

D  Material parameter
5. (Real) 
$\left[\frac{1}{K}\right]$ 
P  Material parameter
6. (Real) 

A_{HS}  Material parameter
7. (Real) 

B_{HS}  Material parameter
8. (Real) 
$\left[\text{Pa}\right]$ 
m  Material parameter
9. (Real) 
$\left[\text{Pa}\right]$ 
n  Material parameter
10. (Real) 

K_{1}  Material parameter
11. (Real) 

K_{2}  Material parameter
12. (Real 
$\left[\frac{1}{K}\right]$ 
$\text{\Delta}H$  Material parameter
13. (Real 
$\left[\text{Pa}\right]$ 
V_{m0}  Initial martensite
fraction. Default = 10^{20} (Real) 

${\dot{\epsilon}}_{0}$  Initial plastic
strain. (Real) 

T_{0}  Initial
temperature. (Real) 
$\left[\text{K}\right]$ 
H_{l}  Latent heat of
martensite. (Real) 
$\left[\text{J}\right]$ 
$\eta $  TaylorQuinney
coefficient. Default = 1.0 (Real) 
Example (Steel)
#RADIOSS STARTER
#12345678910
/UNIT/1
unit for mat
Mg mm s
#12345678910
# 2. MATERIALS:
#12345678910
/MAT/LAW63/1/1
Steel
# RHO_I
7.8E9
# E Nu Cp
210000 .3 460000000
# A B Q C D
.32 .226 1379.4 2.173 .0084
# P AHS BHS m n
6.25 318.2 2170 2.94 1.39
# K1 K2 DH VM_0 EPS0
1 0 414.7 1E4 .002
# T0 Hl eta
273 150 0.9
#12345678910
#ENDDATA
/END
#12345678910
Comments
 Martensite
fraction rate:
(1) $$\frac{\partial {V}_{m}}{\partial {\epsilon}_{p}}=\frac{B}{A}\mathrm{exp}\left(\raisebox{1ex}{$Q$}\!\left/ \!\raisebox{1ex}{$T$}\right.\right){\left(\frac{1{V}_{m}}{{V}_{m}}\right)}^{\raisebox{1ex}{$\left(1+B\right)$}\!\left/ \!\raisebox{1ex}{$B$}\right.}{V}_{m}{}^{P}\frac{1}{2}\left[1\mathrm{tanh}(C+D\cdot T)\right]$$  Martensite fraction:
(2) $${V}_{m}={\displaystyle \underset{0}{\overset{{\epsilon}_{p}}{\int}}\frac{\partial {V}_{m}}{\partial {\epsilon}_{p}}}\partial {\epsilon}_{p}$$  Mechanical behavior:
(3) $${\sigma}_{y}=\left({B}_{\mathit{HS}}\left({B}_{\mathit{HS}}{A}_{\mathit{HS}}\right)exp\left(m{\left({\epsilon}_{p}+{\epsilon}_{0}\right)}^{n}\right)\right)\left({K}_{1}+{K}_{2}T\right)+\text{\Delta}{H}_{\gamma \to \alpha},{V}_{m}$$  The temperature is computed assuming the
adiabatic condition (by default the condition is isothermal with
C_{p} =
10^{30}):
(4) $$T={T}_{0}+\frac{\eta {E}_{int}+{V}_{m}{H}_{l}}{\rho {C}_{p}\left(Volume\right)}$$Where, E_{int} is the internal energy of the element.
 B must
satisfy this condition:
(5) $$\frac{1+B}{B}<p$$  The TaylorQuinney
coefficient must satisfy this condition:
(6) $$0\le \eta \le 1$$