/MAT/LAW63 (HANSEL)

Block Format Keyword This law describes the trip steel plastic material. This material law can be used only with shell elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW63/mat_ID/unit_ID or /MAT/HANSEL/mat_ID/unit_ID
mat_title
ρ i                
E ν Cp        
A B Q C D
P AHS BHS m n
K1 K2 ΔH Vm0 ε ˙ 0
T0 Hl η        

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
E Initial Young's modulus.

(Real)

[ Pa ]
v Poisson's ratio.

(Real)

 
Cp Specific heat capacity.

Default = 1030 (Real)

[ J k g K ]
A Material parameter 1.

(Real)

 
B Material parameter 2. 5

Default = -1.0 (Real)

 
Q Material parameter 3.

(Real)

[ K ]
C Material parameter 4.

(Real)

 
D Material parameter 5.

(Real)

[ 1 K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaaigdaaeaacaWGlbaaaaGaay5waiaaw2faaaaa@3981@
P Material parameter 6.

(Real)

 
AHS Material parameter 7.

(Real)

 
BHS Material parameter 8.

(Real)

[ Pa ]
m Material parameter 9.

(Real)

[ Pa ]
n Material parameter 10.

(Real)

 
K1 Material parameter 11.

(Real)

 
K2 Material parameter 12.

(Real

[ 1 K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaaigdaaeaacaWGlbaaaaGaay5waiaaw2faaaaa@3981@
Δ H Material parameter 13.

(Real

[ Pa ]
Vm0 Initial martensite fraction.

Default = 10-20 (Real)

 
ε ˙ 0 Initial plastic strain.

(Real)

 
T0 Initial temperature.

(Real)

[ K ]
Hl Latent heat of martensite.

(Real)

[ J ]
η Taylor-Quinney coefficient.

Default = 1.0 (Real)

 

Example (Steel)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW63/1/1
Steel
#              RHO_I
              7.8E-9                   
#                  E                  Nu                  Cp
              210000                  .3           460000000
#                  A                   B                   Q                   C                   D
                 .32                .226              1379.4              -2.173               .0084
#                  P                 AHS                 BHS                   m                   n
                6.25               318.2                2170                2.94                1.39
#                 K1                  K2                  DH                VM_0                EPS0
                   1                   0               414.7                1E-4                .002
#                 T0                  Hl                 eta
                 273                 150                 0.9
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. Martensite fraction rate:(1)
    V m ε p = B A exp ( Q T ) ( 1 V m V m ) ( 1 + B ) B V m P 1 2 [ 1 tanh ( C + D T ) ]
  2. Martensite fraction:(2)
    V m = 0 ε p V m ε p ε p
  3. Mechanical behavior:(3)
    σ y = ( B HS ( B HS A HS ) exp ( m ( ε p + ε 0 ) n ) ) ( K 1 + K 2 T ) + Δ H γ α , V m
  4. The temperature is computed assuming the adiabatic condition (by default the condition is isothermal with Cp = 1030):(4)
    T= T 0 + η  E int  +   V m   H l ρ C p ( Volume ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaey4kaSYaaSaaa8aabaWdbiabeE7aOjaacckacaWGfbWdamaaBa aaleaapeGaamyAaiaad6gacaWG0baapaqabaGcpeGaaiiOaiabgUca RiaacckacaGGGcGaamOva8aadaWgaaWcbaWdbiaad2gaa8aabeaak8 qacaGGGcGaamisa8aadaWgaaWcbaWdbiaadYgaa8aabeaaaOqaa8qa cqaHbpGCcaWGdbWdamaaBaaaleaapeGaamiCaaWdaeqaaOWdbmaabm aapaqaa8qacaWGwbGaam4BaiaadYgacaWG1bGaamyBaiaadwgaaiaa wIcacaGLPaaaaaaaaa@56FF@

    Where, Eint is the internal energy of the element.

  5. B must satisfy this condition:(5)
    1 + B B < p
  6. The Taylor-Quinney coefficient must satisfy this condition:(6)
    0η1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkabeE7aOjabgsMiJkaaigdaaaa@3C97@