/MAT/LAW48 (ZHAO)
Block Format Keyword This law describes the Zhao material law used to model an elasto-plastic strain rate dependent materials. The law is applicable only for solids and shells.
The global plasticity option for shells (N=0 in shell property keyword) is not available in the actual version.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW48/mat_ID/unit_ID or /MAT/ZHAO/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
E | |||||||||
A | B | n | Chard | ||||||
C | D | m | EI | k | |||||
Fcut | |||||||||
Definitions
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier (Integer, maximum 10 digits) |
|
mat_title | Material title (Character, maximum 100 characters) |
|
Initial density (Real) |
||
E | Young's modulus (Real) |
|
Poisson's ratio (Real) |
||
A | Plasticity yield
stress (Real) |
|
B | Plasticity hardening
parameter (Real) |
|
n | Plasticity hardening exponent Default = 1.0 (Real) |
|
Chard | Plasticity Iso-kinematic hardening factor.
Default = 0.0 (Real) |
|
Plasticity maximum stress. Default = 1030 (Real) |
||
C | Relative strain rate
coefficient. Default = 1.0 (Real) |
|
D | Strain rate plasticity factor. Default = 0.0 (Real) |
|
m | Relative strain rate exponent. Default = 1.0 (Real) |
|
EI | Strain rate coefficient. Default = 0.0 (Real) |
|
k | Strain rate exponent. Default = 1.0 (Real) |
|
Reference strain
rate. (Real) |
||
Fcut | Cutoff frequency for strain rate
filtering. Default = 0.0 (Real) |
|
Failure plastic strain. Default = 1030 (Real) |
||
Tensile failure strain 1. Default = 1030 (Real) |
||
Tensile failure strain 2. Default = 1030 (Real) |
Example (Metal)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
g mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW48/1/1
metal
# RHO_I
.008
# E nu
200000 .3
# A B n Chard sig_max
145 550 .42 1 0
# C D m E1 k
35 47 .3 185 .3
# eps_rate_0 Fcut
.05 0
# eps_max eps_t1 eps_t2
0 0 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- The stress-strain function is based
on the formula published by Zhao:
(1) Where,- Plastic strain
- Strain rate
- Except for the strain rate
formulation, the plasticity curve is strictly identical to a Johnson-Cook model:
However, compared to Johnson-Cook, the Zhao law allows a better approximation of a nonlinear strain rate dependent behavior.
- Yield stress should be strictly positive.
- The hardening exponent n must be less than 1.
- The iso-kinematic hardening
parameter is defined as:
- If Chard = 0, hardening is a full isotropic model
- If Chard = 1, hardening uses the kinematic Prager-Ziegler model
- If 0 < Chard < 1, hardening is interpolated between the two models
- If
, the term
, and Equation 1 becomes:
(2) - The strain rate filtering is used to smooth strain rate. It is only available for shell and solid elements.
- When
reaches
in one integration point, then based on the element type:
- Shell elements: The corresponding shell element is deleted.
- Solid elements: The deviatoric stress of the corresponding integral point is permanently set to 0, however, the solid element is not deleted.
- If
(
is the largest principal strain), the stress is reduced
as:
(3) - If , the stress is reduced to 0 (but the element is not deleted).