Hill's Law for Orthotropic Plastic Shells

Hill's law models an anisotropic yield behavior. It can be considered as a generalization of von Mises yield criteria for anisotropic yield behavior.

The yield surface defined by Hill can be written in a general form:(1)
F ( σ 22 σ 33 ) 2 + G ( σ 33 σ 11 ) 2 + H ( σ 11 σ 22 ) 2 + 2 L σ 23 2 + 2 M σ 31 2 + 2 N σ 12 2 1 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakq aabeqaaiaadAeadaqadaqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOm aaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam4r amaabmaabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaakiabgk HiTiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGibWaaeWaaeaacq aHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3a aSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiabgUcaRiaaikdacaWGmbGaeq4Wdm3aa0baaSqa aiaaikdacaaIZaaabaGaaGOmaaaakiabgUcaRaqaaiaaikdacaWGnb Gaeq4Wdm3aa0baaSqaaiaaiodacaaIXaaabaGaaGOmaaaakiabgUca RiaaikdacaWGobGaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaaG OmaaaakiabgkHiTiaaigdacqGH9aqpcaaIWaaaaaa@7329@

Where, the coefficients F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGgbaaaa@39A2@ , G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGgbaaaa@39A2@ , H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGgbaaaa@39A2@ , L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGgbaaaa@39A2@ , M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGgbaaaa@39A2@ and N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGgbaaaa@39A2@ are the constants obtained by the material tests in different orientations. The stress components σ 1j are expressed in the Cartesian reference parallel to the three planes of anisotropy. Equation 1 is equivalent to von Mises yield criteria if the material is isotropic.

In a general case, the loading direction is not the orthotropic direction. In addition, we are concerned with the plane stress assumption for shell structures. In planar anisotropy, the anisotropy is characterized by different strengths in different directions in the plane of the sheet. The plane stress assumption will enable to simplify Equation 1, and write the expression of equivalent stress σ e q as:(2)
σ e q = A 1 σ 11 2 + A 2 σ 22 2 A 3 σ 11 σ 22 + A 12 σ 12 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake GabaaVqiabeo8aZnaaBaaaleaacaWGLbGaamyCaaqabaGccqGH9aqp daGcaaqaaiaadgeadaWgaaWcbaGaaGymaaqabaGccqaHdpWCdaqhaa WcbaGaaGymaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamyqamaaBaaa leaacaaIYaaabeaakiabeo8aZnaaDaaaleaacaaIYaGaaGOmaaqaai aaikdaaaGccqGHsislcaWGbbWaaSbaaSqaaiaaiodaaeqaaOGaeq4W dm3aaSbaaSqaaiaaigdacaaIXaaabeaakiabeo8aZnaaBaaaleaaca aIYaGaaGOmaaqabaGccqGHRaWkcaWGbbWaaSbaaSqaaiaaigdacaaI Yaaabeaakiabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaa aabeaaaaa@5C3E@
The coefficients A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaaaaa@37A3@ are determined using Lankford's anisotropy parameter r α :(3)
R = r 00 + 2 r 45 + r 90 4 ; H = R 1 + R ; A 1 = H ( 1 + 1 r 00 ) A 2 = H ( 1 + 1 r 90 ) ; A 3 = 2 H ; A 12 = 2 H ( r 45 + 0.5 ) ( 1 r 00 + 1 r 90 )
Where, the Lankford's anisotropy parameters r α are determined by performing a simple tension test at angle α to orthotropic direction 1:(4)
r α = d ε α + π 2 d ε 33 = H + ( 2 N F G 4 H ) S i n 2 α C o s 2 α F S i n 2 α + G C o s 2 α
The equivalent stress σ e q is compared to the yield stress σ y which varies in function of plastic strain ε p and the strain rate ε ˙ (LAW32):(5)
σ y = a ( ε 0 + ε p ) n . max ( ε ˙ , ε ˙ 0 ) m
Therefore, the elastic limit is obtained by:(6)
σ 0 = a ( ε 0 ) n . ( ε ˙ 0 ) m
The yield stress variation is shown in Figure 1.


Figure 1. Yield Stress Variation
The strain rates are defined at integration points. The maximum value is taken into account:(7)
d ε d t = max ( d ε x d t , d ε y d t , 2 d d t ( ε x y ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake GabaaVqmaalaaabaGaamizaiabew7aLbqaaiaadsgacaWG0baaaiab g2da9iGac2gacaGGHbGaaiiEamaabmaabaWaaSaaaeaacaWGKbGaeq yTdu2aaSbaaSqaaiaadIhaaeqaaaGcbaGaamizaiaadshaaaGaaiil amaalaaabaGaamizaiabew7aLnaaBaaaleaacaWG5baabeaaaOqaai aadsgacaWG0baaaiaacYcacaaIYaWaaSaaaeaacaWGKbaabaGaamiz aiaadshaaaWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamiEaiaadMhaae qaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@594E@

In Radioss, it is also possible to introduce the yield stress variation by a user-defined function (LAW43). Then, several curves are defined to take into account the strain rate effect.

It should be noted that as Hill's law is an orthotropic law, it must be used for elements with orthotropy properties as TYPE9 and TYPE10 in Radioss.

Anistropic Hill Material Law with MMC Fracture Model (LAW72)

This material law uses an anistropic Hill yield function along with an associated flow rule. A simple isotropic hardening model is used coupled with a modified Mohr fracture criteria. The yield condition is written as:

φ ( σ , σ y ) = σ H i l l σ y = 0

Where, σ H i l l is the Equivalent Hill stress given as:
  • For 3D model (Solid)

    σ H i l l = F ( σ y y σ z z ) 2 + G ( σ z z σ x x ) 2 + H ( σ x x σ y y ) 2 + 2 L σ y z 2 + 2 M σ z x 2 + 2 N σ x y 2

  • For Shell

    σ h i l l = F σ y y 2 + G σ x x 2 + H ( σ x x σ y y ) 2 + 2 N σ x y 2

Where, F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@ , G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@ , H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@ , N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@ , M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@ , and L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@ are six Hill anisotropic parameters.

For the yield surface a modified swift law is employed to describe the isotropic hardening in the application of the plasticity models:

σ y = σ y 0 ( ε p 0 + ε p ) n

Where,
σ y 0
Initial yield stress
ε p 0
Initial equivalent plastic strain
ε p
Equivalent plastic strain
n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@
Material constant
Modified Mohr fracture criteria
A damage accumulation is computed as:

D = 0 ε p d ε p ε f ( θ , η )

Where, ε f is a plastic strain fracture for the modified Mohr fracture criteria is given by:
  • Anisotropic 3D model

    ε f = { σ y 0 C 2 [ C 3 + 3 2 3 ( 1 C 3 ) ( sec ( θ π 6 ) 1 ) ] [ 1 + C 1 2 3 cos ( θ π 6 ) + C 1 ( η + 1 3 sin ( θ π 6 ) ) ] } 1 n

    with:

    { θ = 1 2 π arccos ξ ξ = 27 2 J 3 σ V M 3 η = 1 3 ( σ x x + σ y y + σ z z ) σ V M

    Where,
    J 3
    Third invariant of the deviatoric stress
  • 2D Anisotropic Model

    ε f = { σ y 0 C 2 f 3 [ ( 1 + C 1 2 3 f 1 ) + C 1 ( η + f 2 3 ) ] } 1 n

    With:

    { f 1 = cos { 1 3 arcsin [ 27 2 η ( η 2 1 3 ) ] } f 2 = sin { 1 3 arcsin [ 27 2 η ( η 2 1 3 ) ] } f 3 = C 3 + 3 2 3 ( 1 C 3 ) ( 1 f 1 1 )

    Where,
    C 1 , C 2 and C 3
    Parameters for MMC fracture model
The fracture initiates when D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@ = 1.
In order to represent realistic process of an element, a softening function β is introduced to reduce the deformation resistance. The yield surface is modified as:

σ y = β σ y 0 ( ε p 0 + ε p ) n

with β = ( D c D D c 1 ) m

Where,
D c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGJbaabeaaaaa@37D3@
Critical damage

We have crack propagation when 1 < D < D C in this case 0 < β < 1 is considered to reduce the yield surface otherwise the β =1.

The element is deleted if D D c .