RD-E: 0902 Collision between Two Balls

Two balls are now considered in order to study the behavior of impacting spherical balls.

Input Files

The input files used in this example include:
Collision study
<install_directory>/hwsolvers/demos/radioss/example/09_Billiards/Collision_simulation/COLLISION*

Model Description

Study on Trajectories

The balls' behavior is described using the parameters (angles and velocities) shown in Figure 1. The numerical results are compared with the analytical solution, assuming a perfect elastic rebound (coefficient of restitution is equal to 1).

rad_ex_fig_9-11
Figure 1. Problem Data
Initial Values
V1
0.7m.s-1
V2
1m.s-1
θ 1
40°
θ 2
30
massball
44.514g

Model Method

The balls and the table have the same properties, previously defined for a pool game. The dimensions of the table are 900 mm x 450 mm x 25 mm and the balls' diameter is 50.8 mm. The balls and the table are meshed with 16-node thick shell elements for using the TYPE16 Lagrangian interface.

rad_ex_fig_9-12
Figure 2. Mesh of the Problem (16-node thick shells)
The initial translational velocities are applied to the balls in the /INIV Engine option. Velocities are projected on the X and Y axes.

rad_ex_fig_9-13
Figure 3. Initial Velocities Applied on the Balls (initial position)

Gravity is considered for the balls (0.00981 mm.ms-2 ).

The ball/ball and balls/table contact is modeled using the TYPE16 interface (secondary nodes/main 16-node thick shells contact). The interface defining the ball/ball contact is shown in Figure 4.

rad_ex_fig_9-14
Figure 4. Main and Secondary Sides for the TYPE 16 Lagrangian Interface

Analytical Solution

Take two balls, 1 and 2 from masses m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ and m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ , moving in the same plane and approaching each other on a collision course using velocities V 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ and V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ , as shown in Figure 5.

rad_ex_fig_9-15
Figure 5. General Problem of Collision Between Two Balls
Velocities are projected onto the local axes n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGUbaaaa@39CA@ and t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGUbaaaa@39CA@ . To obtain the velocities and their direction after impact, the momentum conservation law is recorded for the two balls:(1) m 1 V 1 n + m 2 V 2 n = m 1 V 1 n ' m 2 V 2 n ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqGHsislcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaBaaa leaacaaIXaGaamOBaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaik daaeqaaOGaamOvamaaBaaaleaacaaIYaGaamOBaaqabaGccqGH9aqp caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaDaaaleaacaaIXa GaamOBaaqaaiaacEcaaaGccqGHsislcaWGTbWaaSbaaSqaaiaaikda aeqaaOGaamOvamaaDaaaleaacaaIYaGaamOBaaqaaiaacEcaaaaaaa@5073@
Or(2) m 1 V 1 sin θ 1 + m 2 V 2 sin θ 2 = m 1 V 1 ' sin θ 1 ' m 2 V 2 ' sin θ 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqGHsislcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaBaaa leaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiabeI7aXnaaBaaale aacaaIXaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaGc caWGwbWaaSbaaSqaaiaaikdaaeqaaOGaci4CaiaacMgacaGGUbGaeq iUde3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyBamaaBaaaleaa caaIXaaabeaakiaadAfadaqhaaWcbaGaaGymaaqaaiaacEcaaaGcci GGZbGaaiyAaiaac6gacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaacEca aaGccqGHsislcaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaamOvamaaDa aaleaacaaIYaaabaGaai4jaaaakiGacohacaGGPbGaaiOBaiabeI7a XnaaDaaaleaacaaIYaaabaGaai4jaaaaaaa@63FD@
The shock is presumed elastic and without friction. Maintaining the translational kinetic energy is respected as there is no rotational energy:(3) 1 2 m 1 ( V 1 n ' 2 + V 1 t ' 2 ) + 1 2 m 2 ( V 2 n ' 2 + V 2 t ' 2 ) = 1 2 m 1 ( V 1 n 2 + V 1 t 2 ) + 1 2 m 2 ( V 2 n 2 + V 2 t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2gadaWgaaWcbaGaaGym aaqabaGcdaqadaqaaiaadAfadaqhaaWcbaGaaGymaiaad6gaaeaaca GGNaGaaGOmaaaakiabgUcaRiaadAfadaqhaaWcbaGaaGymaiaadsha aeaacaGGNaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaaba GaaGymaaqaaiaaikdaaaGaamyBamaaBaaaleaacaaIYaaabeaakmaa bmaabaGaamOvamaaDaaaleaacaaIYaGaamOBaaqaaiaacEcacaaIYa aaaOGaey4kaSIaamOvamaaDaaaleaacaaIYaGaamiDaaqaaiaacEca caaIYaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaaba GaaGOmaaaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG wbWaa0baaSqaaiaaigdacaWGUbaabaGaaGOmaaaakiabgUcaRiaadA fadaqhaaWcbaGaaGymaiaadshaaeaacaaIYaaaaaGccaGLOaGaayzk aaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGTbWaaSbaaS qaaiaaikdaaeqaaOWaaeWaaeaacaWGwbWaa0baaSqaaiaaikdacaWG UbaabaGaaGOmaaaakiabgUcaRiaadAfadaqhaaWcbaGaaGOmaiaads haaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@719F@

Such equality implies that the recovering capacity of the two balls corresponds to their tendency to deform.

This condition equals one of the elastic impacts, with no energy loss. Maintaining the system's energy gives:(4) ( V 2 n ' V 1 n ' ) = ( V 2 n V 1 n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNaaa aOGaeyOeI0IaamOvamaaDaaaleaacaaIXaGaamOBaaqaaiaacEcaaa aakiaawIcacaGLPaaacqGH9aqpcqGHsisldaqadaqaaiaadAfadaWg aaWcbaGaaGOmaiaad6gaaeqaaOGaeyOeI0IaamOvamaaBaaaleaaca aIXaGaamOBaaqabaaakiaawIcacaGLPaaaaaa@4C0C@

This relation means that the normal component of the relative velocity changes into its opposite during the elastic shock (coefficient of restitution value e is equal to the unit).

The following equations must be checked for normal components:(5) V 2 n ' = V 1 n ' = ( V 2 n V 1 n ) m 2 V 2 n ' + m 1 V 1 n ' = m 2 V 2 n + m 1 V 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakq aabeqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNaaaaOGa eyypa0JaamOvamaaDaaaleaacaaIXaGaamOBaaqaaiaacEcaaaGccq GH9aqpcqGHsisldaqadaqaaiaadAfadaWgaaWcbaGaaGOmaiaad6ga aeqaaOGaeyOeI0IaamOvamaaBaaaleaacaaIXaGaamOBaaqabaaaki aawIcacaGLPaaaaeaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaamOv amaaDaaaleaacaaIYaGaamOBaaqaaiaacEcaaaGccqGHRaWkcaWGTb WaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaDaaaleaacaaIXaGaamOB aaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaikdaaeqaaO GaamOvamaaBaaaleaacaaIYaGaamOBaaqabaGccqGHRaWkcaWGTbWa aSbaaSqaaiaaigdaaeqaaOGaamOvamaaBaaaleaacaaIXaGaamOBaa qabaaaaaa@6147@
The equations system using V'1 and V'2 as unknowns is easily solved:(6) V 2 n ' = ( m 2 m 1 m 2 + m 1 ) V 2 n + ( 2 m 1 m 1 + m 2 ) V 1 n V 1 n ' = ( m 1 m 2 m 1 + m 2 ) V 1 n + ( 2 m 2 m 1 + m 2 ) V 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakq aabeqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNaaaaOGa eyypa0ZaaeWaaeaadaWcaaqaaiaad2gadaWgaaWcbaGaaGOmaaqaba GccqGHsislcaWGTbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyBamaa BaaaleaacaaIYaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGymaa qabaaaaaGccaGLOaGaayzkaaGaamOvamaaBaaaleaacaaIYaGaamOB aaqabaGccqGHRaWkdaqadaqaamaalaaabaGaaGOmaiaad2gadaWgaa WcbaGaaGymaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPa aacaWGwbWaaSbaaSqaaiaaigdacaWGUbaabeaaaOqaaiaadAfadaqh aaWcbaGaaGymaiaad6gaaeaacaGGNaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGTbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaamyBamaaBaaaleaacaaIXaaabe aakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGa ayzkaaGaamOvamaaBaaaleaacaaIXaGaamOBaaqabaGccqGHRaWkda qadaqaamaalaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGOmaaqabaaa keaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBa aaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaacaWGwbWaaSbaaSqa aiaaikdacaWGUbaabeaaaaaa@7628@

It should be noted that these relations depend upon the masses ratio.

As the balls do not suffer from velocity change in the t-direction, maintaining the tangential component of each sphere's velocity provides:(7) V 1 t ' = V 1 t = V 1 cos θ 1 V 2 t ' = V 2 t = V 2 cos θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakq aabeqaaiaadAfadaqhaaWcbaGaaGymaiaadshaaeaacaGGNaaaaOGa eyypa0JaamOvamaaBaaaleaacaaIXaGaamiDaaqabaGccqGH9aqpca WGwbWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGaeqiU de3aaSbaaSqaaiaaigdaaeqaaaGcbaGaamOvamaaDaaaleaacaaIYa GaamiDaaqaaiaacEcaaaGccqGH9aqpcaWGwbWaaSbaaSqaaiaaikda caWG0baabeaakiabg2da9iaadAfadaWgaaWcbaGaaGOmaaqabaGcci GGJbGaai4BaiaacohacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaaa@57E8@
The norms of velocities after shock result from the following relations.(8) V 1 ' = ( ( V 1 n ' ) 2 + ( V 1 t ' ) 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaigdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaqhaaWcbaGaaGymaiaad6gaaeaacaGGNa aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYa aeWaaeaacaWGwbWaa0baaSqaaiaaigdacaWG0baabaGaai4jaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@4CEB@ (9) V 2 ' = ( ( V 2 n ' ) 2 + ( V 2 t ' ) 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaikdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNa aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYa aeWaaeaacaWGwbWaa0baaSqaaiaaikdacaWG0baabaGaai4jaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@4CEE@

In this example, balls have the same mass: m1 = m2.

Therefore, V 2 ' = V 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaikdaaeaacaGGNaaaaOGaeyypa0JaamOv amaaBaaaleaacaaIXaGaamOBaaqabaaaaa@3F0B@ and V 1 n ' = V 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaigdacaWGUbaabaGaai4jaaaakiabg2da 9iaadAfadaWgaaWcbaGaaGOmaiaad6gaaeqaaaaa@3FFE@ .

The norms of the velocities are given using the following relations, depending on the initial velocities and angles. Used to determine the analytical solutions (angles and velocities after collision):(10) V 1 ' = ( ( V 2 ) 2 sin 2 θ 2 + ( V 1 ) cos 2 θ 1 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaigdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaah aaWcbeqaaiaaikdaaaGccqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccq GHRaWkdaqadaqaaiaadAfadaWgaaWcbaGaaGymaaqabaaakiaawIca caGLPaaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccq aH4oqCdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaahaaWc beqaaiaaigdacaGGVaGaaGOmaaaaaaa@5595@ (11) V 2 ' = ( ( V 1 ) 2 sin 2 θ 1 + ( V 2 ) cos 2 θ 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaikdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaah aaWcbeqaaiaaikdaaaGccqaH4oqCdaWgaaWcbaGaaGymaaqabaGccq GHRaWkdaqadaqaaiaadAfadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccq aH4oqCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaadaahaaWc beqaaiaaigdacaGGVaGaaGOmaaaaaaa@5596@
By recording the projection of the velocities, directions after shock can be evaluated using relation. Used to determine the analytical solutions (angles and velocities after collision):(12) θ 1 ' = arcsin ( V 2 V 1 sin θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaacEcaaaGccqGH9aqpciGG HbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gadaqadaqaamaalaaaba GaamOvamaaBaaaleaacaaIYaaabeaaaOqaaiaadAfadaWgaaWcbaGa aGymaaqabaaaaOGaci4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaaaaa@4D7C@ (13) θ 2 ' = arcsin ( V 1 V 2 sin θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpciGG HbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gadaqadaqaamaalaaaba GaamOvamaaBaaaleaacaaIXaaabeaaaOqaaiaadAfadaWgaaWcbaGa aGOmaaqabaaaaOGaci4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaai aaigdaaeqaaaGccaGLOaGaayzkaaaaaa@4D7C@

Results

Numerical Results Comparison with the Analytical Solution

Figure 6 shows the trajectories of the balls' center point obtained using numerical simulation before and after collision.

rad_ex_fig_9-16
Figure 6. Trajectories of Balls (center of gravity)

rad_ex_fig_9-17
Figure 7. Variation of Velocities V i = 2 K E i m a s s i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaakiabg2da9maakaaabaWaaSaaaeaacaaIYaGa am4saiaadweadaWgaaWcbaGaamyAaaqabaaakeaacaWGTbGaamyyai aadohacaWGZbWaaSbaaSqaaiaadMgaaeqaaaaaaeqaaaaa@4177@ (collision at 40 ms)

rad_ex_fig_9-18
Figure 8. Energy Assessment
For given initial values of V 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ , V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ , θ 1 and θ 2, simulation results are reported in Table 1.
Table 1. Comparison of Results for After Collision
  Numerical Results Analytical Solution
θ 1' 42.27° 44.72°
θ 2' 26.75° 26.48°
V 1' 0.731 m/s .731 m/s
V 2' 0.969 m/s 0.977 m/s

Conclusion

The simulation corroborates with the analytical solution. The 16-node thick shells are fully-integrated elements without hourglass energy. This modeling provides a good transmission of momentum. However, the TYPE16 interface does not take into account the quadratic surface on the secondary side (ball 2), due to the node to thick shell contact. Accurate results are obtained for a collision without penetrating the quadratic surface of the secondary side in order to confirm impact between the spherical bodies.

A fine mesh could improve the results.