RD-E: 4300 Perfect Gas Modeling with Polynomial EOS

Polynomial EOS is used to model perfect gas. Pressure or energy can be absolute values or relative. Material LAW6 (/MAT/HYDRO) is used to build material cards for each of these cases.

The purpose of this example is to plot numerical pressure, internal energy, and sound speed for a perfect gas material law. Comparison to theoretical results is made.

ex43_perfect_gas_model
Figure 1.
Polynomial EOS is often used by Radioss to compute hydrodynamic pressure. It is cubic in compression and linear in expansion.(1) ex43_polynomial_eq
Where,(2) E = E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGG UbGaaiiDaaqabaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaaaa a@4051@
and (3) μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaaaaa@41BB@
Material LAW6 (/MAT/HYDRO) uses this equation to compute hydrostatic pressure. It is possible to consider absolute values or relative variation (Table 1). This example shows how to build material control cards for each of the following cases:
Table 1. Modeling Formulation for Perfect Gas
Case Mathematical Model Pressure Energy
1 P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@ absolute absolute
2 Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjk aiaawMcaaaaa@3FCB@ relative absolute
3 Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyr aaGaayjkaiaawMcaaaaa@4131@ relative relative
4 P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyraaGaayjk aiaawMcaaaaa@3FCB@ absolute relative

A simple test of compression/expansion is made to compare these formulation outputs with theoretical results.

Options and Keywords Used

  • Perfect gas
  • Polynomial EOS (/EOS/POLYNOMIAL)
  • Absolute / Relative formulations
  • Pressure shift
  • Hydrodynamic fluid material (/MAT/LAW6 (HYDRO or HYD_VISC))
  • Imposed displacement (/IMPDISP)

    Nodes on each of the faces are moved with imposed displacement

  • Boundary conditions (/ALE/BCS)

    Boundary nodes are defined as Lagrangian

Element pressure, density and internal energy density are saved in the Time History file.

Input Files

The input files used in this example include:
Model 1
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/01-Pabsolute_Eabsolute/*
Model 2
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/02-Prelative_Eabsolute/*
Model 3
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/03-Prelative_Erelative/*
Model 4
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/04-Pabsolute_Erelative/*

Model Description

This test consists with an elementary volume of perfect gas undergoing spherical expansion and compression.

ex43_cube
Figure 2.
Initial conditions are:
P 0
1e5 Pa
V 0
1000 m3
ρ 0
1.204 [ kg m 3 ]
μ 0
0

The fluid will be assumed to be a perfect gas. Volume is changed in the three directions to consider a pure compression ( 1 < μ < 0 ) followed by an expansion of matter ( 0 < μ ) (Figure 3).

This test will be modeled with a single ALE element (8 node brick) and polynomial EOS.

Evolutions of pressure, internal energy and sound speed will be compared between numerical output and theoretical results.

ex43_elementary_volume_change
Figure 3. Elementary Volume Change. Length is Modified with /IMPDISP Card; its Influences on V and μ are Plotted

Polynomial EOS

Polynomial EOS is used in material LAW6 (/MAT/HYDRO) to compute hydrodynamic pressure. It is cubic in compression and linear in expansion.(4)
ex43_polynomial_eq
Where,
P
Hydrodynamic pressure
(5) E = E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbGaeyypa0ZaaSaaaeaacaWGfbWaaSraaSqaaiGacMgacaGG UbGaaiiDaaqabaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaaaa a@4052@
and(6) μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaaaaa@41BB@
{ C i } i = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGdbWaaSbaaSqaaiaadMgaaeqaaaGccaGL7bGaayzFaaGaaGjcVlaa ysW7caWGPbGaeyypa0JaaGimaiaac6cacaaI1aaaaa@4150@ are called hydrodynamic coefficients and they are input flags. Hypothesis on the material behavior allows determining of these coefficients:

This example is focused only on Perfect Gas modeling.

Model Method

A single ALE brick element is used. Material is confined inside the element by defining brick nodes as Lagrangian. For each face, displacement is imposed on the four nodes along the normal.

Material LAW6 (/MAT/HYDRO) is used and describes the hydrodynamic viscous fluid material.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW6/mat_ID/unit_ID or /MAT/HYDRO/mat_ID/unit_ID
mat_title
ρ i              
υ                
C0 C1 C2 C3    
Pmin Psh            
C4 C5 E0        

Pressure Shift

Material LAW6 introduces flag Psh which allows shifting computed pressure in the polynomial equation of state:(7)
ex43_pressure_shift

Radioss Engine shifts C0 flag and computed pressure P ( μ , E ) with an offset of -Psh.

Minimum Pressure

(8) P min = lim μ1 P( μ,E ) P sh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyypa0ZaaCbeaeaaciGG SbGaaiyAaiaac2gaaSqaaiabeY7aTjabgkziUkabgkHiTiaaigdaae qaaOGaaGjbVlaadcfadaqadaqaaiabeY7aTjaacYcacaWGfbaacaGL OaGaayzkaaGaeyOeI0IaamiuamaaBaaaleaacaWGZbGaamiAaaqaba aaaa@4E25@

The theoretical value is P m i n = 0 P a (absolute pressure) with a default value of -1030, to accept a negative value in relative pressure formulation.

This flag has to be manually offset with -Psh.

Results

Theoretical Results

The purpose of this section is to plot pressure, internal energy, and sound speed in function of the single parameter V or μ .
  1. Pressure
    Perfect gas pressure is given by:(9) P V = ( γ 1 ) E int MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaamOvaiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGym aaGaayjkaiaawMcaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0b aabeaaaaa@4434@
    Then,(10) d P ( V , E int ) = P V | E int d V + P E int | V d E int MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamiuamaabmaabaGaamOvaiaacYcacaWGfbWaaSbaaSqa aiGacMgacaGGUbGaaiiDaaqabaaakiaawIcacaGLPaaacqGH9aqpda abcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadAfaaaaa caGLiWoadaWgaaWcbaGaamyramaaBaaameaaciGGPbGaaiOBaiaacs haaeqaaaWcbeaakiaadsgacaWGwbGaey4kaSYaaqGaaeaadaWcaaqa aiabgkGi2kaadcfaaeaacqGHciITcaWGfbWaaSbaaSqaaiGacMgaca GGUbGaaiiDaaqabaaaaaGccaGLiWoadaWgaaWcbaGaamOvaaqabaGc caWGKbGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaaa@5E4A@
    Radioss assumes the hypothesis of an isentropic process to compute the change in internal energy:(11) d E int = P d V
    This theory gives the following differential equation:(12) d P d V = γ P V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadsgacaWGqbaabaGaamizaiaadAfaaaGaeyypa0Ja eyOeI0YaaSaaaeaacqaHZoWzcaWGqbaabaGaamOvaaaaaaa@41C3@
    This has the form y ' + γ / x = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG5bGaai4jaiabgUcaRiabeo7aNjaac+cacaWG4bGaeyypa0Ja aGimaaaa@4079@ and the general solution is:(13) y = C s t . x γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG5bGaeyypa0Jaam4qaiaadohacaWG0bGaaiOlaiaadIhadaah aaWcbeqaaiabgkHiTiabeo7aNbaaaaa@4204@
    Pressure is also polytropic:(14) P V γ = P V 0 0 γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaamOvamaaCaaaleqabaGaeq4SdCgaaOGaeyypa0Jaamiu amaaBeaaleaacaaIWaaabeaakiaadAfadaWgaaWcbaGaaGimaaqaba GcdaahaaWcbeqaaiabeo7aNbaaaaa@42D0@ (15) P ( V ) = P 0 ( V 0 V ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacaWGwbaacaGLOaGaayzkaaGaeyypa0Jaamiu amaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaaeaacaWGwbWaaS baaSqaaiaaicdaaeqaaaGcbaGaamOvaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiabeo7aNbaaaaa@44EE@

    Here, γ is the material constant (ratio of heat capacity). For diatomic gas γ =1.4. Air is made mainly of diatomic gas, so set gamma to 1.4 for air.

  2. Internal Energy
    Equation 9 and Equation 15 lead to the immediate result:(16) E int ( V ) = P 0 V 0 γ ( γ 1 ) V γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGcdaqadaqa aiaadAfaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadcfadaWgaa WcbaGaaGimaaqabaGccaWGwbWaaSbaaSqaaiaaicdaaeqaaOWaaWba aSqabeaacqaHZoWzaaaakeaadaqadaqaaiabeo7aNjabgkHiTiaaig daaiaawIcacaGLPaaacaWGwbWaaWbaaSqabeaacqaHZoWzcqGHsisl caaIXaaaaaaaaaa@4EC7@
  3. Sound Speed
    Perfect gas sound speed is:(17) c = γ P / ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbGaeyypa0ZaaOaaaeaacqaHZoWzcaWGqbGaai4laiabeg8a YbWcbeaaaaa@3FCF@
    Equation 15 gives its expression in term of volume:(18) c = γ P 0 ρ 0 ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbGaeyypa0ZaaSaaaeaacqaHZoWzcaWGqbWaaSraaSqaaiaa icdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaabm aabaWaaSaaaeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOv aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabeo7aNjabgkHiTiaaig daaaaaaa@48AD@
The theoretical results are listed in the table below. Pressure, internal energy, and sound speed are expressed both in function of V and μ .
Pressure (Pa) Internal Energy Density (J) Sound Speed (m/s)
PREF(V) PREF( μ ) ρ eREF(V) ρ eREF( μ ) cREF(V) cREF( μ )
P 0 ( V 0 V ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaa dAfadaWgaaWcbaGaaGimaaqabaaakeaacaWGwbaaaaGaayjkaiaawM caamaaCaaaleqabaGaeq4SdCgaaaaa@40AF@ P 0 ( 1 + μ ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey4k aSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzaaaaaa@414C@ P 0 ( γ 1 ) ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadcfadaWgaaWcbaGaaGimaaqabaaakeaadaqadaqa aiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaaaaWaaeWaaeaada WcaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaakeaacaWGwbaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaeq4SdCMaeyOeI0IaaGymaaaaaa a@473F@ P 0 ( γ 1 ) ( 1 + μ ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadcfadaWgaaWcbaGaaGimaaqabaaakeaadaqadaqa aiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaaaaWaaeWaaeaaca aIXaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacqaH ZoWzcqGHsislcaaIXaaaaaaa@47DC@ γ P 0 ρ 0 ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaGcaaqaamaalaaabaGaeq4SdCMaamiuamaaBaaaleaacaaIWaaa beaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaam aalaaabaGaamOvamaaBaaaleaacaaIWaaabeaaaOqaaiaadAfaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzcqGHsislcaaIXaaaaa qabaaaaa@46CE@ γ P 0 ρ 0 ( 1 + μ ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaGcaaqaamaalaaabaGaeq4SdCMaamiuamaaBaaaleaacaaIWaaa beaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaai aaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaadaahaaWcbeqaaiab eo7aNjabgkHiTiaaigdaaaaabeaaaaa@476B@
Corresponding plots are:

ex43_perfect_gas_pressure
Figure 4. Perfect Gas Pressure

ex43_perfect_gas_internal_energy
Figure 5. Perfect Gas Internal Energy

ex43_perfect_gas_sound_speed
Figure 6. Perfect Gas Sound Speed

Material Control Cards

Material is supposed to be a perfect gas. The following cases have been investigated:
  • Case 1: Both Pressure and Energy are absolute values: P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@
  • Case 2: Pressure is relative and Energy is absolute: Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjk aiaawMcaaaaa@3FCB@
  • Case 3: Both Pressure and Energy are relative: Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyr aaGaayjkaiaawMcaaaaa@4131@
  • Case 4: Pressure is absolute and Energy is relative: P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyraaGaayjk aiaawMcaaaaa@3FCB@

Sound Speed and Time Step

Material law 6 computes sound speed through the usual expression for fluids:(19) c 2 = d P d ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWG KbGaamiuaaqaaiaadsgacqaHbpGCaaaaaa@402F@
It can be written in function of μ :(20) μ = ρ ρ 0 1 1 d ρ = 1 ρ 0 1 d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaGaeyO0H49aaSaaaeaaca aIXaaabaGaamizaiabeg8aYbaacqGH9aqpdaWcaaqaaiaaigdaaeaa cqaHbpGCdaWgaaWcbaGaaGimaaqabaaaaOWaaSaaaeaacaaIXaaaba GaamizaiabeY7aTbaaaaa@4F77@
Then,(21) c 2 = 1 ρ 0 d P d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaalaaabaGaam izaiaadcfaaeaacaWGKbGaeqiVd0gaaaaa@43A0@
The total differential of P in terms of internal energy E and μ is:(22) d P ( μ , E ) = P μ | E d μ + P E | μ d E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamiuamaabmaabaGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaacqGH9aqpdaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaai abgkGi2kabeY7aTbaaaiaawIa7amaaBaaaleaacaWGfbaabeaakiaa ysW7caWGKbGaeqiVd0Maey4kaSYaaqGaaeaadaWcaaqaaiabgkGi2k aadcfaaeaacqGHciITcaWGfbaaaaGaayjcSdWaaSbaaSqaaiabeY7a TbqabaGccaWGKbGaamyraaaa@570F@
In case of an isentropic transformation (reversible and adiabatic), the change of internal energy E int with volume V and pressure P is given by:(23) d E int = P d V
Using relation which links E int and E leads to:(24) d E = P V 0 d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamyraiabg2da9iabgkHiTmaalaaabaGaamiuaaqaaiaa dAfadaWgaaWcbaGaaGimaaqabaaaaOGaamizaiaadAfaaaa@40F1@
μ can be expressed in terms of volume ratio:(25) μ = υ 0 υ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabew8a1naaBaaaleaacaaIWaaa beaaaOqaaiabew8a1baacqGHsislcaaIXaaaaa@41C9@
Its variation in function of the volume change is also:(26) d μ = V 0 V 2 d V = ( 1 + μ ) 2 V 0 d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaeqiVd0Maeyypa0JaeyOeI0YaaSaaaeaacaWGwbWaaSba aSqaaiaaicdaaeqaaaGcbaGaamOvamaaCaaaleqabaGaaGOmaaaaaa GccaWGKbGaamOvaiabg2da9iabgkHiTmaalaaabaWaaeWaaeaacaaI XaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaaGccaWGKbGaamOv aaaa@4E37@
Change in internal energy per unit volume E is then:(27) d E = P ( 1 + μ ) 2 d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamyraiabg2da9iabgkHiTmaalaaabaGaamiuaaqaamaa bmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaaGccaWGKbGaeqiVd0gaaa@45D0@ (28) d P ( μ , E ) d μ = P μ | E + P ( 1 + μ ) 2 P E | μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadsgacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyr aaGaayjkaiaawMcaaaqaaiaadsgacqaH8oqBaaGaeyypa0ZaaqGaae aadaWcaaqaaiabgkGi2kaadcfaaeaacqGHciITcqaH8oqBaaaacaGL iWoadaWgaaWcbaGaamyraaqabaGccqGHRaWkdaWcaaqaaiaadcfaae aadaqadaqaaiaaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaaaaOWaaqGaaeaadaWcaaqaaiabgkGi2kaadc faaeaacqGHciITcaWGfbaaaaGaayjcSdWaaSbaaSqaaiabeY7aTbqa baaaaa@5A89@
Finally, the sound speed is given by:(29) c 2 = 1 ρ 0 P μ | E + P ρ 0 ( 1 + μ ) 2 P E | μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaaeiaabaWaaS aaaeaacqGHciITcaWGqbaabaGaeyOaIyRaeqiVd0gaaaGaayjcSdWa aSbaaSqaaiaadweaaeqaaOGaey4kaSYaaSaaaeaacaWGqbaabaGaeq yWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey4kaSIa eqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakmaaei aabaWaaSaaaeaacqGHciITcaWGqbaabaGaeyOaIyRaamyraaaaaiaa wIa7amaaBaaaleaacqaH8oqBaeqaaaaa@5969@
This expression computes the sound speed for a given equation of state P ( μ , E ) . In the case of perfect gas, it was shown that for each type of formulation (absolute or relative), EOS can be written:(30) P ( μ , E ) = C 0 + C 1 μ + ( C 4 + C 5 μ ) E
Equation 29 is used to compute sound speed:(31) P μ | E = C 1 + C 5 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kabeY7a TbaaaiaawIa7amaaBaaaleaacaWGfbaabeaakiabg2da9iaadoeada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwda aeqaaOGaamyraaaa@46FC@ (32) P E | μ = C 4 + C 5 μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadwea aaaacaGLiWoadaWgaaWcbaGaeqiVd0gabeaakiabg2da9iaadoeada WgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwda aeqaaOGaeqiVd0gaaa@47EB@ (33) c 2 = C 1 + C 5 E ρ 0 + C 0 + C 1 μ + ( C 4 + C 5 μ ) E ρ 0 ( 1 + μ ) 2 ( C 4 + C 5 μ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWG dbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4qamaaBaaaleaaca aI1aaabeaakiaadweaaeaacqaHbpGCcaaIWaaaamaaBaaaleaaaeqa aOGaey4kaSYaaSaaaeaacaWGdbWaaSbaaSqaaiaaicdaaeqaaOGaey 4kaSIaam4qamaaBaaaleaacaaIXaaabeaakiabeY7aTjabgUcaRmaa bmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgUcaRiaadoeada WgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGLPaaacaWGfbaa baGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey 4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa kmaabmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgUcaRiaado eadaWgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGLPaaaaaa@63F4@
This calculation is then applied for each of the four cases.
Table 2. Numerical Sound Speed vs. Theoretical Expression
Case C0 C1 C4 C5 c2

Comparison with Theoretical Value
1 0 0 γ 1 γ 1 γ ( γ 1 ) E ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadweaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaaaa@42D6@ c = cREF
2 0 0 γ 1 γ 1 γ ( γ 1 ) E ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadweaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaaaa@42D6@ c = cREF
3 E 0 ( γ 1 ) E 0 ( γ 1 ) γ 1 γ 1 γ ( γ 1 ) ( E + E 0 ) ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaamaabmaabaGaamyraiabgUcaRiaadweadaWgaaWcba GaaGimaaqabaaakiaawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGa aGimaaqabaaaaaaa@46FB@ c = cREF
4 E 0 ( γ 1 ) E 0 ( γ 1 ) γ 1 γ 1 γ ( γ 1 ) ( E + E 0 ) ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaamaabmaabaGaamyraiabgUcaRiaadweadaWgaaWcba GaaGimaaqabaaakiaawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGa aGimaaqabaaaaaaa@46FB@ c = cREF

For each of the four formulations, the computed sound speed by Radioss is the same as the theoretical one. Time step and cycle number are also not affected.

Case 1: Both Pressure and Energy are Absolute Values

  1. Equation of State
    Equation of state can be written:(34) P = ( γ 1 ) E int V = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGL OaGaayzkaaWaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaai iDaaqabaaakeaacaWGwbaaaiabg2da9maabmaabaGaeq4SdCMaeyOe I0IaaGymaaGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiabeY 7aTbGaayjkaiaawMcaamaalaaabaGaamyramaaBaaaleaaciGGPbGa aiOBaiaacshaaeqaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaa aaaa@54B2@
    with(35) E int | t = 0 = E 0 V 0 = P 0 V 0 γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaa aOGaayjcSdWaaSbaaSqaaiaadshacqGH9aqpcaaIWaaabeaakiabg2 da9iaadweadaWgaaWcbaGaaGimaaqabaGccaWGwbWaaSbaaSqaaiaa icdaaeqaaOGaeyypa0ZaaSaaaeaacaWGqbWaaSbaaSqaaiaaicdaae qaaOGaamOvamaaBaaaleaacaaIWaaabeaaaOqaaiabeo7aNjabgkHi Tiaaigdaaaaaaa@4DB5@
    Expanding this expression and identifying the polynomial coefficients leads to:(36) P ( μ , E ) = ( C 4 + C 5 μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgU caRiaadoeadaWgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGL PaaacaWGfbaaaa@47CF@

    Where, C 4 = C 5 = ( γ 1 ) , E 0 = P 0 γ 1 , P s h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0Jaam4qamaaBeaa leaacaaI1aaabeaakiaaykW7cqGH9aqpdaqadaqaaiabeo7aNjabgk HiTiaaigdaaiaawIcacaGLPaaacaGGSaGaaGzbVlaadweadaWgaaWc baGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadcfadaWgaaWcbaGaaG imaaqabaaakeaacqaHZoWzcqGHsislcaaIXaaaaiaacYcacaaMf8Ua amiuamaaBaaaleaacaWGZbGaamiAaaqabaGccqGH9aqpcaaIWaaaaa@55D0@

  2. Corresponding Input
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_ID or /MAT/HYDRO/mat_ID/unit_ID
    AbsolutePRESSURE_AbsoluteENERGY
    ρ i              
    υ                
    0 0 0 0    
    0 0            
    C4 = γ 1 1 C5 = γ 1 E 0 = P 0 γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaWG qbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeq4SdCMaeyOeI0IaaGymaa aaaaa@40BB@        
  3. Output Results
    Table 3.
    Time History Measure Initial Value Unit
    /TH/BRICK (P) P P0 Pressure
    /TH (IE) E int ( = E x V 0 ) E 0 V 0 Energy
    /TH/BRICK (IE) E int / V E 0 Pressure
  4. Comparison with Theoretical Result
    Numerical result for perfect gas pressure is given by time history. Element time history (/TH/BRICK) allows displaying it. This result is compared to a theoretical one. Curves are superimposed.

    ex43_numerical_pressure_model1
    Figure 7. Numerical Pressure, Model 1: P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@
    Internal energy can be obtained through two different ways. The first one is internal energy density ( E int / V ) recorded by element time history (/TH/BRICK). The second one is the internal energy from the global time history ( e l e m E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaamyramaaBaaaleaaci GGPbGaaiOBaiaacshaaeqaaaGccaGLOaGaayzkaaaaaa@45BC@ because the model is composed of a single element.

    ex43_numerical_internal_energy_model1
    Figure 8. Numerical Internal Energy, Model 1: P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@

Case 2: Pressure is Relative and Energy is Absolute

  1. Equation of State
    Equation of state for a perfect gas is:(37) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaa laaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcba GaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@4EC9@
    Calculating Pressure from a reference one provides relative pressure:(38) Δ P = P ( μ , E ) P 0 = ( γ 1 ) ( 1 + μ ) E int V 0 P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbGaeyypa0JaamiuamaabmaabaGaeqiVd0Maaiil aiaadweaaiaawIcacaGLPaaacqGHsislcaWGqbWaaSbaaSqaaiaaic daaeqaaOGaeyypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGL OaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaay zkaaWaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqa baaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaakiabgkHiTiaadc fadaWgaaWcbaGaaGimaaqabaaaaa@576E@
    Expanding this expression and identifying with polynomial coefficients leads to:(39) Δ P ( μ , E ) = P ( μ , E ) = P s h = P s h + ( C 4 + C 5 μ ) E

    Where, C 4 = C 5 = ( γ 1 ) , E 0 = P 0 γ 1 , P s h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0Jaam4qamaaBeaa leaacaaI1aaabeaakiaaykW7cqGH9aqpdaqadaqaaiabeo7aNjabgk HiTiaaigdaaiaawIcacaGLPaaacaGGSaGaaGzbVlaadweadaWgaaWc baGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadcfadaWgaaWcbaGaaG imaaqabaaakeaacqaHZoWzcqGHsislcaaIXaaaaiaacYcacaaMf8Ua amiuamaaBaaaleaacaWGZbGaamiAaaqabaGccqGH9aqpcaaIWaaaaa@55D0@

  2. Minimum Pressure(40) P ( μ , E ) 0 Δ P P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabgwMiZkaaicdacqGHshI3cqqHuoarcaWGqbGaeyyzImRaeyOeI0 IaamiuamaaBaaaleaacaaIWaaabeaaaaa@49EB@

    Then, the minimum pressure must be set to a non-zero value P min = P 0 .

  3. Corresponding Input
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_ID or /MAT/HYDRO/mat_ID/unit_ID
    RelativePRESSURE_AbsoluteENERGY
    ρ i              
    υ                
    0 0 0 0    
    -P0 P0            
    C4 = γ 1 C5 = γ 1 E 0 = P 0 γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaWG qbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeq4SdCMaeyOeI0IaaGymaa aaaaa@40BB@        
  4. Output Result
    Time History Measure Initial Value Unit
    /TH/BRICK (P) ΔP 0 Pressure
    /TH (IE) E int ( = E x V 0 ) E 0 V 0 Energy
    /TH/BRICK (IE) E int / V E 0 Pressure
  5. Comparison with Theoretical Result
    Element time history (/TH/BRICK) is the pressure relative to Psh. The resulting curve is then shifted with Psh value and starts from 0.

    ex43_numerical_pressure_model2
    Figure 9. Numerical Pressure, Model 2: Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaaaaa@3F7F@
    Internal energy can be obtained through two different ways. The first one is internal energy density ( E int / V ) recorded by element time history (/TH/BRICK). The second one is the internal energy from the global time history ( e l e m E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaamyramaaBaaaleaaci GGPbGaaiOBaiaacshaaeqaaaGccaGLOaGaayzkaaaaaa@45BC@ because the model is composed of a single element.

    ex43_numerical_internal_energy_model2
    Figure 10. Numerical Internal Energy, Model 2: Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaaaaa@3F7F@

Case 3: Both Pressure and Energy are Relative

  1. Equation of State
    Equation of state for a perfect gas is:(41) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaa laaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcba GaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@4EC9@
    Initial internal energy can be introduced:(42) E int = E int + ( E int | t = 0 E int | t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGH9aqp caWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGHRaWkda qadaqaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaakmaa BaaaleaadaabbaqaaiaadshacqGH9aqpcaaIWaaacaGLhWoaaeqaaO GaeyOeI0IaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaOWa aSbaaSqaamaaeeaabaGaamiDaiabg2da9iaaicdaaiaawEa7aaqaba aakiaawIcacaGLPaaaaaa@559F@
    Calculating pressure from a reference one provides:(43) P ( μ , E ) P 0 = Δ P = ( γ 1 ) ( 1 + μ ) ( Δ E + E 0 ) P 0
    Where,(44) Δ E = E int E int | t = 0 V 0 E 0 = E int | t = 0 V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamyraiabg2da9maalaaabaGaamyramaaBaaaleaaciGG PbGaaiOBaiaacshaaeqaaOGaeyOeI0IaamyramaaBaaaleaaciGGPb GaaiOBaiaacshaaeqaaOWaaSraaSqaamaaeeaabaGaamiDaiabg2da 9iaaicdaaiaawEa7aaqabaaakeaacaWGwbWaaSbaaSqaaiaaicdaae qaaaaakiaaysW7caWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Za aSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGcda WgbaWcbaWaaqqaaeaacaWG0bGaeyypa0JaaGimaaGaay5bSdaabeaa aOqaaiaadAfadaWgaaWcbaGaaGimaaqabaaaaOWaaSbaaSqaaaqaba aaaa@5970@
    Expanding this expression and identifying with polynomial coefficients leads to:(45) Δ P ( μ , Δ E ) = P ( μ , E ) P s h = C 0 P s h + C 1 μ + ( C 4 + C 5 μ ) Δ E
    Where, C 0 = C 1 = E 0 ( γ 1 ) C 4 = C 5 = γ 1 Δ E 0 = 0 P s h = P 0
  2. Minimum Pressure(46) P ( μ , E ) 0 Δ P P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabgwMiZkaaicdacqGHshI3caqGuoGaamiuaiabgwMiZkabgkHiTi aadcfadaWgaaWcbaGaaGimaaqabaaaaa@499F@

    The minimum pressure must be set to a non-zero value P min = P 0 .

  3. Corresponding Input
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_ID or /MAT/HYDRO/mat_ID/unit_ID
    RelativePRESSURE_RelativeENERGY
    ρ i              
    υ                
    E 0 ( γ1 ) E 0 ( γ 1 ) 0 0    
    -P0 P0            
    C4 = γ 1 C5 = γ 1 0        
  4. Output Results
    Time History Measure Initial Value Unit
    /TH/BRICK (P) Δ P 0 Pressure
    /TH (IE) Δ E int ( = Δ E x V 0 ) 0 Energy
    /TH/BRICK (IE) Δ E int / V 0 Pressure
  5. Comparison with Theoretical Result
    Element time history (/TH/BRICK) is the pressure relative to Psh. The resulting curve is then shifted with Psh value and starts also from 0.

    ex43_numerical_pressure_model3
    Figure 11. Numerical Pressure, Model 3: Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0Maaiilaiaabs5acaWGfbaa caGLOaGaayzkaaaaaa@4099@
    Internal energy can be obtained through two different ways. The first one is internal energy density ( E int / V ) recorded by element time history (/TH/BRICK). The second one is the internal energy from the global time history ( e l e m E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaamyramaaBaaaleaaci GGPbGaaiOBaiaacshaaeqaaaGccaGLOaGaayzkaaaaaa@45BC@ because the model is composed of a single element. This numerical internal energy is relative to its initial value; it is shifted with the E 0 V 0 value from the absolute theoretical one and also starts from 0.

    ex43_numerical_internal_energy_model3
    Figure 12. Numerical Internal Energy, Model 3: Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0Maaiilaiaabs5acaWGfbaa caGLOaGaayzkaaaaaa@4099@

Case 4: Pressure is Absolute and Energy is Relative

  1. Equation of State
    Equation of state for a perfect gas is:(47) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaa laaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcba GaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@4EC9@
    Initial internal energy can be introduced:(48) E int = E int + ( E int | t = 0 E int | t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGH9aqp caWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGHRaWkda qadaqaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaakmaa BaaaleaadaabbaqaaiaadshacqGH9aqpcaaIWaaacaGLhWoaaeqaaO GaeyOeI0IaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaOWa aSbaaSqaamaaeeaabaGaamiDaiabg2da9iaaicdaaiaawEa7aaqaba aakiaawIcacaGLPaaaaaa@559F@
    Which leads to:(49) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) ( E 0 + Δ E )
    Expanding this expression and identifying with polynomial coefficients leads to:(50) P ( μ , E ) = C 0 + C 1 μ + ( C 4 + C 5 μ ) Δ E
    Where, C 0 = C 1 = E 0 ( γ 1 ) C 4 = C 5 = γ 1
  2. Corresponding Input
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_ID or /MAT/HYDRO/mat_ID/unit_ID
    AbsolutePRESSURE_RelativeENERGY
    ρ i              
    υ                
    E 0 ( γ 1 ) E 0 ( γ 1 ) 0 0    
    0 0            
    C4 = γ 1 C5 = γ 1 0        
  3. Output Results
    Time History Measure Initial Value Unit
    /TH/BRICK (P) P P0 Pressure
    /TH (IE) Δ E int ( = Δ E x V 0 ) 0 Energy
    /TH/BRICK (IE) Δ E int / V 0 Pressure
  4. Comparison with Theoretical Result
    Element time history (/TH/BRICK) gives absolute pressure. This result is compared to a theoretical one. Curves are superimposed.

    ex43_numerical_pressure_model4
    Figure 13. Numerical Pressure, Model 4: P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaaeiLdiaadweaaiaawIca caGLPaaaaaa@3F7F@
    Internal energy can be obtained through two different ways. The first one is internal energy density ( Δ E int / V ) recorded by element time history (/TH/BRICK). The second one is the internal energy from the global time history ( e l e m Δ E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaaeiLdiaadweadaWgaa WcbaGaciyAaiaac6gacaGG0baabeaaaOGaayjkaiaawMcaaaaa@46D6@ because the model is composed of a single element. This numerical internal energy is relative to its initial value; it is shifted with the E 0 V 0 value from the absolute theoretical one and also starts from 0.

    ex43_numerical_internal_energy_model4
    Figure 14. Numerical Internal Energy, Model 4: P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaaeiLdiaadweaaiaawIca caGLPaaaaaa@3F7F@