/INTER/TYPE5

Block Format Keyword This interface is used to simulate impacts between a main surface and a list of secondary nodes.

Description

This interface is mainly used to:
  • Simulate impact of beam truss spring nodes on a surface
  • Simulate impact of a complex fine mesh on a simply convex surface
  • Replace a rigid wall

See main limitations of this interface in Comment 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/INTER/TYPE5/inter_ID/unit_ID
inter_title
grnd_IDs surf_IDm         Ibag Idel    
Stfac Fric Gap Tstart Tstop
IBC   IRm Inacti            
Ifric Ifiltr Xfreq   sens_ID P t l i m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadshacaWGSbGaamyAaiaad2gaaeqaaaaa@3C33@    
Read this input only if Ifric > 0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
C1 C2 C3 C4 C5
Read this input only if Ifric > 1
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
C6                

Definitions

Field Contents SI Unit Example
inter_ID Interface identifier

(Integer, maximum 10 digits)

 
unit_ID Unit identifier

(Integer, maximum 10 digits)

 
inter_title Interface title

(Character, maximum 100 characters)

 
grnd_IDs Secondary nodes group identifier.

(Integer)

 
surf_IDm Main surface identifier.

(Integer)

 
Ibag Airbag vent holes closure flag in case of contact.
= 0 (Default)
No closure.
= 1
Closure.

(Integer)

 
Idel Node and segment deletion flag. 5
= 0 (Default)
No deletion.
= 1
When all the elements (4-node shells, 3-node shells, solids) associated to one segment are deleted, the segment is removed from the main side of the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the secondary side of the interface.
= 2
When a 4-node shell, a 3-node shell or a solid element is deleted, the corresponding segment is removed from the main side of the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the interface.
= -1
Same as =1, except non-connected nodes are not removed from the secondary side of the interface.
= -2
Same as =2, except non-connected nodes are not removed from the secondary side of the interface.

(Integer)

 
Stfac Interface stiffness scale factor.

Default = 0.2 (Real)

[ N m ]
Fric Coulomb friction.

(Real)

 
Gap Gap for impact activation.

(Real)

[ m ]
Tstart Start time for contact impact computation.

(Real)

[ s ]
Tstop Time for temporary deactivation.

(Real)

[ s ]
IBC Deactivation flag of boundary conditions at impact.

(Boolean)

 
IRm Renumbering flag for segments of the main surface.
= 0
If segment is connected to a solid element its normal is reversed if entering the solid element (the segment is renumbered).
= 1
Normal is always reversed (segment 1234 is read 2143).
= 2
Normal is never reversed (segments connected to a solid element are not renumbered).

(Integer)

 
Inacti Removing the initial penetrations flag. 12
= 0
No action.
= 3
Change secondary node coordinates to avoid initial penetration.
= 4
Change main node coordinates to avoid initial penetration.

(Integer)

 
Ifric Friction formulation flag. 9
= 0 (Default)
Static Coulomb friction law.
= 1
Generalized viscous friction law.
= 2
(Modified) Darmstad friction law.
= 3
Renard friction law.

(Integer)

 
Ifiltr Friction filtering flag. 10
= 0 (Default)
No filter is used.
= 1
Simple numerical filter.
= 2
Standard -3dB filter with filtering period.
= 3
Standard -3dB filter with cutting frequency.

(Integer)

 
Xfreq Filtering coefficient. Should have a value between 0 and 1.

(Real)

 
sens_ID Sensor identifier to activate/deactivate the interface.

If an identifier sensor is defined, the activation/deactivation of interface is based on sensor and not on Tstart or Tstop.

(Integer)

 
P t l i m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadshacaWGSbGaamyAaiaad2gaaeqaaaaa@3C33@ Maximum tangential pressure. 13

Generally P t l i m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadshacaWGSbGaamyAaiaad2gaaeqaaaaa@3C33@ is defined as yield stress.

Default = 1030 (Real)

[ Pa ]
C1 Friction law coefficient

(Real)

 
C2 Friction law coefficient

(Real)

 
C3 Friction law coefficient

(Real)

 
C4 Friction law coefficient

(Real)

 
C5 Friction law coefficient

(Real)

 
C6 Friction law coefficient

(Real)

 

Flags for Deactivation of Boundary Conditions: IBC

(1)-1 (1)-2 (1)-3 (1)-4 (1)-5 (1)-6 (1)-7 (1)-8
          IBCX IBCY IBCZ

Definitions

Field Contents SI Unit Example
IBCX
=1
Deactivation flag of X boundary condition at impact.

(Boolean)

 
IBCY
=1
Deactivation flag of Y boundary condition at impact.

(Boolean)

 
IBCZ
=1
Deactivation flag of Z boundary condition at impact.

(Boolean)

 

Comments

  1. The main limitations for this interface are:
    • The main segment normals must be oriented from main surface to the secondary nodes;
    • On the main side, the segments must be connected to solid or shell elements;
    • The same node may not be put in the two impact surfaces;
    • Some search problems (see Common Problems in the Radioss Theory Manual).
  2. All the normals of the main surface segments must be oriented toward the secondary surface. Otherwise, mixing the orientation of the normals can lead to initial penetrations.
  3. Secondary and main surfaces should be topologically different: a node cannot be on the two surfaces at the same time.
  4. Flag Idel =1 has a CPU cost higher than Idel =2.
  5. If the stiffness on the main side is much less than the stiffness on the secondary side, the stiffness factor Stfac can be increased to a value greater than 1; otherwise the stiffness factor should have a value between 0 and 1.
  6. For example, the interface stiffness balance is:(1)
    Stfac E s e s E m e m
    Where,
    E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaad2gaaeqaaaaa@3ABF@
    Main stiffness
    e m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaad2gaaeqaaaaa@3ABF@
    Main thickness
    E s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaad2gaaeqaaaaa@3ABF@
    Secondary stiffness
    e s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaad2gaaeqaaaaa@3ABF@
    Secondary thickness
  7. If IBCX = 1, the boundary condition in X direction is deactivated. IBCY and IBCZ behave the same way respectively in Y and Z direction.
  8. Boundary conditions are only deactivated on secondary nodes.
  9. For friction formulation:
    • If the friction flag Ifric > 0 (default), the old static friction formulation is used:

      F T μ F N with μ = Fric (Coulomb friction).

    • If the friction flag Ifric > 0, new friction models are introduced. In this case, the friction coefficient is set by a function:(2)
      μ = μ ( p , V )
      Where,
      p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@
      Pressure of the normal force on the main segment
      V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D1@
      Tangential velocity of the secondary node relative to the main segment
    Currently, the following formulations are available:
    • Ifric = 1 (Generalized viscous friction law):
      (3)
      μ = Fric + C 1 . p + C 2 V + C 3 . p V + C 4 p 2 + C 5 V 2
    • Ifric = 2 (Modified Darmstad law):(4)
      μ = F r i c + C 1 e ( C 2 V ) p 2 + C 3 e ( C 4 V ) p + C 5 e ( C 6 V ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaWGgbGaamOCaiaadMgacaWGJbGaey4kaSIaam4qamaaBaaa leaacaaIXaaabeaakiabgwSixlaadwgadaahaaWcbeqaamaabmaaba Gaam4qamaaBaaameaacaaIYaaabeaaliaadAfaaiaawIcacaGLPaaa aaGccqGHflY1caWGWbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam 4qamaaBaaaleaacaaIZaaabeaakiabgwSixlaadwgadaahaaWcbeqa amaabmaabaGaam4qamaaBaaameaacaaI0aaabeaaliaadAfaaiaawI cacaGLPaaaaaGccqGHflY1caWGWbGaey4kaSIaam4qamaaBaaaleaa caaI1aaabeaakiabgwSixlaadwgadaahaaWcbeqaamaabmaabaGaam 4qamaaBaaameaacaaI2aaabeaaliaadAfaaiaawIcacaGLPaaaaaaa aa@6298@
    • Ifric = 3 (Renard law):(5)
      μ = C 1 + ( C 3 C 1 ) V C 5 ( 2 V C 5 )
      if V [ 0 , C 5 ] (6)
      μ = C 3 ( ( C 3 C 4 ) ( V C 5 C 6 C 5 ) 2 ( 3 2 V C 5 C 6 C 5 ) )
      if V [ C 5 , C 6 ] (7)
      μ = C 2 1 1 C 2 C 4 + ( V C 6 ) 2

      if V C 6

      Where,

      C 1 = μ s

      C 2 = μ d

      C 3 = μ max

      C 4 = μ min

      C 5 = V c r 1

      C 6 = V c r 2

    First critical velocity V c r 1 = C 5 must be different to 0 ( C 5 0 ).

    First critical velocity V c r 1 = C 5 must be less than the second critical velocity V cr 2 = C 6 ( C 5 < C 6 ) .

    The static friction coefficient C1 and the dynamic friction coefficient C2, must be less than the maximum friction C3 ( C 1 C 3 and C 2 C 3 ).

    The minimum friction coefficient C4 must be less than the static friction coefficient C1 and the dynamic friction coefficient C2 ( C 4 C 1 and C 4 C 2 ).
    Table 1. Units for Friction Formulations
    Ifric Fric C1 C2 C3 C4 C5 C6
    1 [ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ s Pa m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4CaaqaaiaabcfacaqGHbGaeyyXICTaaeyBaaaaaiaa wUfacaGLDbaaaaa@3E47@ [ 1 Pa 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaabcfacaqGHbWaaWbaaSqabeaacaaIYaaa aaaaaOGaay5waiaaw2faaaaa@3BC6@ [ s 2 m 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4CamaaCaaaleqabaGaaGOmaaaaaOqaaiaab2gadaah aaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaaa@3C2C@
    2 [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@
    3 [ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@ [ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@
  10. If Ifiltr flag is not zero, the tangential forces are smoothed using a filter:(8)
    F T = α F T + ( 1 α ) F T 1

    Where, α coefficient is calculated from:

    if Ifiltr =1 α = X f r e q , simple numerical filter

    if Ifiltr =2 α = 2 π X f r e q , standard -3dB filter, with X f r e q = d t T , and T = filtering period

    if Ifiltr =3 α = 2 π X f r e q d t standard -3dB filter, with Xfreq = cutting frequency

  11. The coefficients C1 through C6 are used to define a variable friction coefficient μ for new friction formulations.
  12. Since the coordinate change will be irreversible, this action needs be made with great precaution because it may:
    • Create other initial penetrations, if several surface layers are defined in the interfaces
    • Create initial energy if node belongs to spring element

    Inacti = 3 or 4 is only recommended for small initial penetrations.

  13. In 2D analysis, tangent contact force is limited when P t l i m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadshacaWGSbGaamyAaiaad2gaaeqaaaaa@3C33@ is defined by the following equation:(9)
    F t P t l i m S 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbWaaS baaSqaaiaadshaaeqaaOGaeyizImQaamiuamaaBaaaleaacaWG0bGa amiBaiaadMgacaWGTbaabeaakmaalaaabaGaam4uaaqaamaakaaaba GaaG4maaWcbeaaaaaaaa@41AC@

    While, S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGtbaaaa@39AF@ is extrapolated length of segments connected to the secondary node.