/INTER/TYPE25

Block Format Keyword TYPE25 is a general nodes to surface contact interface using the penalty method. The penalty stiffness is constant and therefore the time step is not affected.

Solid elements have zero contact gap thickness. Contact inputs can be defined as a single surface, surface to surface, or nodes to surface.

This contact interface can replace interface TYPE3, TYPE5, TYPE7, TYPE19 or TYPE24.

This interface is not available with the implicit solution.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/INTER/TYPE25/inter_ID/unit_ID
inter_title
surf_ID1 surf_ID2 Istf   Igap Irem_i2   Idel Iedge  
grnd_IDs   Gap_scale %mesh_size Gap_max_s Gap_max_m
Stmin Stmax Igap0 Ishape Edge_angle  
Required Fields
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Stfac Fric     Tstart Tstop
IBC   IVIS2 Inacti VISs    
Ifric Ifiltr Xfreq   sens_ID     fric_ID
Read this input only if Ifric > 0 (Optional)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
C1 C2 C3 C4 C5
Read this input only if Ifric > 1 (Optional)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
C6        
Read this input only if IVIS2 = -1 (Optional)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ViscFluid SigMaxAdh ViscAdhFact    

Definitions

Field Contents SI Unit Example
inter_ID Interface identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
inter_title Interface title.

(Character, maximum 100 characters)

 
surf_ID1 First surface identifier. 1

(Integer)

 
surf_ID2 Second surface identifier.

(Integer)

 
Istf Interface stiffness definition flag. 2
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=2
Interface stiffness is the average of the main and secondary stiffness.
=3
Interface stiffness is the maximum of the main and secondary stiffness.
=4
Interface stiffness is the minimum of the main and secondary stiffness.
=5
Interface stiffness is the main and secondary stiffness in series.
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
Interface stiffness is only based on the main side stiffness.

(Integer)

 
Igap Gap/element option flag. 3
=0
Use value defined in /DEFAULT/INTER/TYPE25.
=1 Default, if /DEFAULT/INTER/TYPE25 is not defined
Variable gap varies according to the characteristics of the impacted main surface and the impacting secondary node.
=2
Variable gap (similar to Igap=1) and deactivating secondary nodes if element size < gap value, in case of self-impact contact.
=3
Variable gap where the size of the mesh (defined in %mesh_size) is considered to avoid initial penetrations in self-contact.
 
Irem_i2 Deactivating flag for the secondary node, if the same contact pair (nodes) has been defined in interface TYPE2.
=0
Use the value defined in /DEFAULT/INTER/TYPE25.
=1 Default, if /DEFAULT/INTER/TYPE25 is not defined
Secondary nodes in /INTER/TYPE2 tied contacts are removed from this contact.
=3
No change to secondary nodes.
 
Idel Node and segment deletion flag.
=0
Use the value defined in /DEFAULT/INTER/TYPE25.
=1
When all the elements (4-node shells, 3-node shells, solids) associated to one segment are deleted, the segment is removed from the main side of the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the secondary side of the interface.
=2
When a 4-node shell, a 3-node shell or a solid element is deleted, the corresponding segment is removed from the main side of the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the secondary side of the interface.
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
No deletion.
 
Iedge Edge contact options. Contact occurs between main and secondary edges which are automatically extracted from surf_ID1 and surf_ID2. Sharp edges for external solid faces are defined using the angle Edge_angle. Friction is not included.
= 0
Set to the value defined in /DEFAULT/INTER/TYPE25
= 1
The secondary and the main edges are the external border edges of shell segments. There is no edge contact for solid elements.
= 11
The secondary edges are the sharp edges of the external solid segments and external border edges of shell segments. The main edges are all edges from external solid segments and external border edges of shell segments.
= 13
The secondary edges are the sharp edges of the external solid segments and external border edges of shell segments. The main edges are all edges from external solid segments and all shell segments.
= 22
The secondary and main edges are all edges from external solid segments and all edges from shell segments.
= 1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
No edge to edge contact.

(Integer)

 
grnd_IDs Nodes group identifier. 1

If defined, node group will be added as secondary nodes.

(Integer)

 
Gap_scale Gap scale factor for all Igap options.

Default = 1.0 (Real)

 
%mesh_size Percentage of mesh size (used only when Igap = 3).

Default = 0.4 (Real)

 
Gap_max_s Secondary maximum gaps. 3

Default = 1030 (Real)

[ m ]
Gap_max_m Main maximum gaps. 3

Default = 1030 (Real)

[ m ]
Stmin Minimum stiffness (used only when Istf > 1 and Istf < 7). 2

(Real)

[ N m ]
Stmax Maximum stiffness (used only when Istf > 1 and Istf < 7). 2

Default = 1030 (Real)

[ N m ]
Igap0 Gap modification flag for secondary shell nodes on the free edges or shell elements. 3
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=1
Set gap to zero for the secondary shell nodes that are on a free edge. For shell edge contact, the free edges are shifted so that the edge does not extend out of the shell segment.
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
No change.

(Integer)

 
Ishape Flag defining the shape of the gap along the surface(s) external border in the node to surface contact.
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=1 Default, if /DEFAULT/INTER/TYPE25 is not defined
Square gap.
=2
Round gap.

(Integer)

 
Edge_angle Edge angle

Only used with Iedge =11,13. Sharp edges are included in edge contact, if the angle between two segments which share the same edge is smaller than Edge_angle value.

Default = 135° (Real)
[ deg ]
Stfac Interface stiffness scale factor. 2

Default = 1.0 (Real)

 
Fric Coulomb friction.

(Real)

 
Tstart Start time. 10

(Real)

[ s ]
Tstop Temporary deactivation time. 10

Default = 1030 (Real)

[ s ]
IBC Deactivation flag of boundary conditions at impact.

(Boolean)

 
Inacti Initial penetration flag.
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=-1
All initial penetrations are taken into account.
=5
The main segment is shifted by the initial penetration value P 0 .
If P P 0 , then P ' = P P 0 , where P 0 is the initial penetration.
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
Only tiny initial penetrations will be taken into account.

(Integer)

 
VISs Critical damping coefficient on interface stiffness.

Default = 0.05 (Real)

 
Ifric Friction formulation flag.
Only used if fric_ID is not defined.
= 0 (Default)
Static Coulomb friction law
= 1
Generalized viscous friction law
= 2
(Modified) Darmstad friction law
= 3
Renard friction law

(Integer)

 
Ifiltr Friction filtering flag.
= 0 (Default)
No filter is used.
= 1
Simple numerical filter.
= 2
Standard -3dB filter with filtering period.
= 3
Standard -3dB filter with cutting frequency.

(Integer)

 
Xfreq Filtering coefficient.

Default = 1.0 (Real)

 
sens_ID Sensor identifier to activate/deactivate the interface.

(Integer)

 
fric_ID Friction identifier for friction definition for selected pairs of parts.
= 0 (Default)
Use friction parameters defined in this interface
0
Use /FRICTION/fric_ID

(Integer)

 
C1 Friction law coefficient. 5

(Real)

 
C2 Friction law coefficient.

(Real)

 
C3 Friction law coefficient.

(Real)

 
C4 Friction law coefficient.

(Real)

 
C5 Friction law coefficient.

(Real)

 
C6 Friction law coefficient.

(Real)

 
IVIS2 Interface adhesion flag. 12
=0 (Default)
No adhesion interface forces.
=-1
Enable transverse adhesion and tangential viscous force.

(Interger)

 
ViscFluid Viscosity of the fluid at the interface. 12

(Real)

[ Pas ]
SigMaxAdh Maximum transverse adhesive stress at interface. 12

(Real)

[ Pa ]
ViscAdhFact Tangential viscous resistant force scaling factor. 12

(Real)

 

Flags for Deactivation of Boundary Conditions: IBC

(1)-1 (1)-2 (1)-3 (1)-4 (1)-5 (1)-6 (1)-7 (1)-8
          IBCX IBCY IBCZ

Definitions

Field Contents SI Unit Example
IBCX Deactivation flag of X boundary condition at impact.
=0
Free DOF
=1
Fixed DOF

(Boolean)

 
IBCY Deactivation flag of Y boundary condition at impact.
=0
Free DOF
=1
Fixed DOF

(Boolean)

 
IBCZ Deactivation flag of Z boundary condition at impact.
=0
Free DOF
=1
Fixed DOF

(Boolean)

 

Comments

  1. Contact main/secondary pairs can be defined in three ways:
    • Single self-impacting surface only: surf_ID1 > 0, and surf_ID2 = 0
    • Symmetric surface to surface: surf_ID1 > 0, and surf_ID2 > 0
    • Nodes to surface: grnd_IDs > 0, surf_ID1 = 0, and surf_ID2 > 0

    grnd_IDs > 0 is used to define node to surface contact type, but it may also be used in other contact types. In that case, the node group will be added simply as supplementary secondary nodes, which is useful when users want to add spring element nodes, main node of rigid body, etc. into the contact (as secondary nodes).

    If the surface is defined with shells, two contact segments (shifted by half thickness (t)) with opposite normal directions will be generated:

    inter_type24
    Figure 1.

    In case of SPMD, each main segment defined by surf_IDi (i=1, 2) must be associated to an element (possibly to a void element).

    In cases where quadratic elements are used, it is recommended to define the surfaces by using /SURF/PART/EXT as in that case, middle nodes of quadratic elements are used in the contact treatment.

    The surface definition /SURF/PART/ALL is not available with TYPE25.

  2. Contact stiffness, K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGlbaaaa@39A7@ is computed as:(1)
    K = max [ S t min , min ( S t max , K n ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0JaciyBaiaacggacaGG4bWaamWaaeaacaWGtbGaamiDamaaBaaa leaaciGGTbGaaiyAaiaac6gaaeqaaOGaaiilaiGac2gacaGGPbGaai OBamaabmaabaGaam4uaiaadshadaWgaaWcbaGaciyBaiaacggacaGG 4baabeaakiaacYcacaWGlbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaaaaa@4E62@
    Where, K n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaaaa@384D@ depends on Istf:
    • Istf = 1000, K n = K m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0Jaam4samaaBaaaleaacaWGTbaa beaaaaa@3B4B@
    • Istf = 2, K n = K m + K s 2
    • Istf = 3, K n = max ( K m , K s )
    • Istf = 4, K n = min ( K m , K s )
    • Istf = 5, K n = K m K s K m + K s
    K m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad2gaaeqaaaaa@384D@ : main segment stiffness and computed as:
    • K m = Stfac 0.5 E t , when the main segment lies on a shell.
    • K m = Stfac B S 2 V , when main segment lies on a solid.
    • K m = max ( Stfac 0.5 E t , Stfac B S 2 V ) , when main segment is shared by shell and solid.
    K s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad2gaaeqaaaaa@384D@ : Secondary node stiffness is an equivalent nodal stiffness considered for interface TYPE25, and computed as:
    • K m = Stfac 0.5 E t , when node is connected to a shell element,
    • K s = S t f a c B V 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaadohaaeqaaOGaeyypa0Jaam4uaiaadshacaWGMbGaamyy aiaadogacqGHflY1caWGcbGaeyyXIC9aaOqaaeaacaWGwbaaleaaca aIZaaaaaaa@44FA@ , when node is connected to solid element.
    Where,
    S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Segment area
    V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Volume of the solid
    B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Bulk modulus
    t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Thickness of the shell

    The Stfac value can be larger than 1.0. There is no limitation value to the stiffness factor (a value larger than 1.0 can reduce the initial time step).

    When using /PROP/VOID and /MAT/VOID, material properties and thickness for the VOID material must be entered; otherwise, the contact stiffness of the void elements will be zero. This is especially important if VOID shell elements share elements with solid elements as the stiffness of the shell elements is used in the contact calculation.

  3. The gap is computed automatically for each impact as:
    • If Igap = 1, variable gap is computed as:(2)
      min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGZbaabeaakiaacYca caWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGaai4xai aadohacaGGPaGaey4kaSIaciyBaiaacMgacaGGUbGaaiikaiaadEga daWgaaWcbaGaamyBaaqabaGccaGGSaGaam4raiaadggacaWGWbGaai 4xaiGac2gacaGGHbGaaiiEaiaac+facaWGTbGaaiykaaaa@5590@
    • If Igap=2, variable gap is computed as:(3)
      min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGZbaabeaakiaacYca caWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGaai4xai aadohacaGGPaGaey4kaSIaciyBaiaacMgacaGGUbGaaiikaiaadEga daWgaaWcbaGaamyBaaqabaGccaGGSaGaam4raiaadggacaWGWbGaai 4xaiGac2gacaGGHbGaaiiEaiaac+facaWGTbGaaiykaaaa@5699@
      with deactivation of secondary nodes when the element size is smaller than gap values:

      inter_type7_master_seg
      Figure 2.

      For self-impact contact, when Curvilinear Distance (from a node of the main segment to a secondary node) is smaller than 2 G a p (in initial configuration), this secondary node will not be taken into account by this main segment, and it will not be deleted from the contact for the other main segments.

    • If Igap= 3, variable gap is computed as:(4)
      min [ min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) , % m e s h _ s i z e ( g s _ l + g m _ l ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gadaWadaqaaiGac2gacaGGPbGaaiOBaiaacIcacaWGNbWa aSbaaSqaaiaadohaaeqaaOGaaiilaiaadEeacaWGHbGaamiCaiaac+ faciGGTbGaaiyyaiaacIhacaGGFbGaam4CaiaacMcacqGHRaWkciGG TbGaaiyAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGTbaabeaaki aacYcacaWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGa ai4xaiaad2gacaGGPaGaaiilaiaacwcacaWGTbGaamyzaiaadohaca WGObGaai4xaiaadohacaWGPbGaamOEaiaadwgacqGHflY1daqadaqa aiaadEgadaWgaaWcbaGaam4Caiaac+facaWGSbaabeaakiabgUcaRi aadEgadaWgaaWcbaGaamyBaiaac+facaWGSbaabeaaaOGaayjkaiaa wMcaaaGaay5waiaaw2faaaaa@70AB@
      Where,
      • g m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ : main element gap:

        g m = G a p _ s c a l e * t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaOGaeyypa0Jaam4raiaadggacaWGWbGaai4x aiaadohacaWGJbGaamyyaiaadYgacaWGLbGaaiOkamaalaaabaGaam iDaaqaaiaaikdaaaaaaa@4417@ , with t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39D0@ is the thickness of the main element for shell elements

        g m = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0JaaGimaaaa@3A39@ , for brick elements

      • g s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ : secondary node gap:

        g s = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0JaaGimaaaa@3A39@ , if the secondary node is not connected to any element or is only connected to brick or spring elements.

        g s = G a p _ s c a l e * t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0Jaam4raiaadggacaWGWbGaai4x aiaadohacaWGJbGaamyyaiaadYgacaWGLbGaaiOkamaalaaabaGaam iDaaqaaiaaikdaaaaaaa@441D@ , if the secondary node is connected to a shell element, with t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39D0@ being the largest thickness of the shell elements connected to the secondary node.

        g s = G a p _ s c a l e * S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0Jaam4raiaadggacaWGWbGaai4x aiaadohacaWGJbGaamyyaiaadYgacaWGLbGaaiOkamaalaaabaWaaO aaaeaacaWGtbaaleqaaaGcbaGaaGOmaaaaaaa@4421@ , if the secondary node is connected to truss or beam elements, with S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39D0@ being the cross section of the 1D element.

        If the gap modification flag for secondary shell nodes on the free edges Igap0 is set to 1: g s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaaaa@386F@ is reset to zero if the secondary node lies on the free edges of the secondary surface. The gap modification flag for secondary shell nodes on the free edges has no effect if the secondary node is defined through the optional node group (grnod_IDs).

        If the secondary node is connected to multiple shells and/or beams or trusses, the largest computed secondary gap is used.

    • g m _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ : length of the smallest edge of the main segment.
    • g s _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ : if the secondary node belongs to the main surface, g s _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ is the length of the smallest edge of main segments connected to the secondary node, g s _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ =1E+30, otherwise.

      In any case, g m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ and g s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ are limited separately by Gap_max_m and Gap_max_s before the gap is computed.

      If the secondary node does not belong to the main surface, the gap remains (5)
      min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGZbaabeaakiaacYca caWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGaai4xai aadohacaGGPaGaey4kaSIaciyBaiaacMgacaGGUbGaaiikaiaadEga daWgaaWcbaGaamyBaaqabaGccaGGSaGaam4raiaadggacaWGWbGaai 4xaiGac2gacaGGHbGaaiiEaiaac+facaWGTbGaaiykaaaa@5590@
  4. For node to surface contact, the gap never extends more than the secondary node gap out of the surface external border. Ishape determines if the shape of this gap is square or round and the contact force (normal) direction. Ishape has no effect on the gap and its shape for edge to edge contact.
    Depending on Ishape the gap used for contact at the main surface external border and resulting force direction.


    Figure 3. Ishape=1 (Square Gap)


    Figure 4. Ishape=2 (Round Gap)

    Ishape =1 is not available with Igap =3 and will then be reset to Ishape =2.

  5. For shell element edge to edge contact, the gap is round. The main side contact gap on the free edge is shifted so that the edge does not extend out of the shell segment.


    Figure 5. Edge contact main side
    The secondary side contact gap on the free edge behavior depends on the value of Igap0 as shown in figure xyz.


    Figure 6. Edge contact secondary side
  6. For solid elements when Iedge=11 and Iedge=13, the secondary side consists of only the sharp edges with angle smaller than Edge_angle. For Iedge=22, all edges from solid elements are considered on secondary side. On the main side, all edges from solid elements are included for all 3 Iedge cases.


    Figure 7. Secondary side edges for Iedge=11 and Iedge=13
  7. If fric_ID is defined, the contact friction is defined in /FRICTION and the friction inputs (Ifric, C1, etc.) in this input card are not used.
    The friction forces are:(6)
    F t n e w = min ( μ F n , F a d h )

    While an adhesion force is computed as:

    F a d h = F t o l d + Δ F with Δ F t = K V t d t

    Where, μ is the Coulomb friction coefficient and is defined as:
    • For flag Ifric by default:

      μ = F r i c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaWGgbGaamOCaiaadMgacaWGJbaaaa@3CB3@ with F T μ F N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubaabeaakiabgsMiJkabeY7aTjabgwSixlaadAeadaWg aaWcbaGaamOtaaqabaaaaa@3F50@ (Coulomb friction)

    • For flag Ifric > 1, new friction models are introduced. In this case, the friction coefficient is set by a function:

      μ = μ ( ρ , V )

      Where,
      ρ
      Pressure of the normal force on the main segment
      V
      Tangential velocity of the secondary node relative to the main segment

    Currently, the coefficients C1 through C6 are used to define a variable friction coefficient μ for new friction formulations.

    The following formulations are available:
    • Ifric = 1 (Generalized Viscous Friction law):(7)
      μ = Fric + C 1 p + C 2 V + C 3 p V + C 4 p 2 + C 5 V 2
    • Ifric = 2 (Modified Darmstad law):(8)
      μ = F r i c + C 1 e ( C 2 V ) p 2 + C 3 e ( C 4 V ) p + C 5 e ( C 6 V )
    • Ifric = 3 (Renard law):

      μ = C 1 + ( C 3 C 1 ) V C 5 ( 2 V C 5 ) if V [ 0 , C 5 ]

      μ = C 3 ( ( C 3 C 4 ) ( V C 5 C 6 C 5 ) 2 ( 3 2 V C 5 C 6 C 5 ) ) if V [ C 5 , C 6 ]

      μ = C 2 1 1 C 2 C 4 + ( V C 6 ) 2 if V C 6

      Where,
      • C 1 = μ s , static coefficient of friction, must be μ min < μ s < μ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabgYda8iabeY7aTnaa BaaaleaacaWGZbaabeaakiabgYda8iabeY7aTnaaBaaaleaaciGGTb GaaiyyaiaacIhaaeqaaaaa@44BF@
      • C 2 = μ d , dynamic coefficient of friction, must be μ min < μ d < μ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabgYda8iabeY7aTnaa BaaaleaacaWGKbaabeaakiabgYda8iabeY7aTnaaBaaaleaaciGGTb GaaiyyaiaacIhaaeqaaaaa@44B0@
      • C 3 = μ max , maximum coefficient of friction
      • C 4 = μ min , minimum coefficient of friction
      • C 5 = V cr1 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaiwdaaeqaaOGaeyypa0JaamOvamaaBaaaleaacaWGJbGa amOCaiaaigdaaeqaaOaeaaaaaaaaa8qacqGHGjsUcaaIWaaaaa@3F6E@ , first critical velocity, must be > 0
      • C 6 = V c r 2 , second critical velocity, must be > V cr1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGH+aGpca WGwbWaaSbaaSqaaiaadogacaWGYbGaaGymaaqabaaaaa@3B08@
      • First critical velocity V c r 1 = C 5 must be less than the second critical velocity V c r 2 = C 6 ( C 5 < C 6 ) .
      • The static friction coefficient C 1 and the dynamic friction coefficient C 2 , must be less than the maximum friction C 3 ( C 1 C 3 and C 2 C 3 ).
      • The minimum friction coefficient C 4 must be less than the static friction coefficient C 1 and the dynamic friction coefficient C 2 ( C 4 C 1 and C 4 C 2 ).
        Table 1. Units for Friction Formulations
        Ifric Fric C1 C2 C3 C4 C5 C6
        1 [ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ s Pa m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4CaaqaaiaabcfacaqGHbGaeyyXICTaaeyBaaaaaiaa wUfacaGLDbaaaaa@3E47@ [ 1 Pa 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaabcfacaqGHbWaaWbaaSqabeaacaaIYaaa aaaaaOGaay5waiaaw2faaaaa@3BC6@ [ s 2 m 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4CamaaCaaaleqabaGaaGOmaaaaaOqaaiaab2gadaah aaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaaa@3C2C@
        2 [ 1 Pa 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaabcfacaqGHbWaaWbaaSqabeaacaaIYaaa aaaaaOGaay5waiaaw2faaaaa@3BC6@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@
        3 [ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@ [ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@
  8. Friction filtering
    If Ifiltr = 1, 2 or 3, the tangential forces are smoothed using a filter:(9)
    F t = α F t + ( 1 α ) F t 1
    Where, α coefficient is calculated from:
    • If Ifiltr = 1: α = Xfreq, simple numerical filter
    • If Ifiltr = 2: α = 2 π X f r e q , standard -3dB filter, with X f r e q = d t T , and T = filtering period
    • If Ifiltr = 3: α = 2 π X freq d t , standard -3dB filter, with Xfreq = cutting frequency

    The filtering coefficient Xfreq should have a value between 0 and 1.

  9. Inacti and Ipen_max, initial penetration treatment:
    • Inacti = 1000: The initial penetrations are ignored: no contact force is applied, but the nodes are not deactivated from the contact; if the node goes out of the contact and later gets back into contact, contact forces are then applied.

      inter_type24_inacti=1000
      Figure 8.
    • Inacti = -1: Initial forces are applied on all penetrating nodes. High initial penetrations should be avoided, as they might generate high contact forces and lead to high energy error at the beginning of the computation.
    • Inacti = 5: The main segment is shifted by the initial penetration value ( P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIWaaabeaaaaa@37B2@ ); therefore, at time zero no initial forces are applied.

    The main segment position is restored only in case of rebound larger than P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIWaaabeaaaaa@37B2@ .

    In the opposite case, when secondary node continues to penetrate, the penetration is computed as:(10)
    P ' = P P 0

    inter_type24_inacti=5
    Figure 9.
    • Intersections and large initial penetration (Inacti= -1 and 5):

      Shells: initial intersections should be avoided, as they will lead to wrong direction of contact force and possible secondary nodes anchorage.

  10. When sens_ID is defined for activation/deactivation of the interface, Tstart and Tstop are not taken into account.
  11. For output forces:

    When the contact type is asymmetric surface to surface, the output normal contact forces in Time History are calculated correctly, if the two surfaces are well separated.

  12. IVIS2=-1: is used to add adhesion in the normal direction and viscous resistive forces in the tangential direction. This can be used to model thermoplastic composite forming.
    When used, half of the contact gap is considered an adhesive zone and the other half a physical contact zone. Therefore, to maintain the same physical contact gap, the contact thickness should be doubled using Gap_scale.


    Figure 10.
    The adhesive force is only applied after secondary nodes have entered the physical contact zone and then move back into the adhesion zone. The adhesive force acts to prevent the node from moving out of the adhesion zone and is applied in the normal direction.(11)
    F N = S i g M a x A d h A r e a 1 2 G a p ( 1 2 G a p P a d h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGobaabeaakiabg2da9maalaaabaGaam4uaiaadMgacaWG NbGaamytaiaadggacaWG4bGaamyqaiaadsgacaWGObGaeyyXICTaam yqaiaadkhacaWGLbGaamyyaaqaamaalaaabaGaaGymaaqaaiaaikda aaGaam4raiaadggacaWGWbaaaiaacIcadaWcaaqaaiaaigdaaeaaca aIYaaaaiaadEeacaWGHbGaamiCaiabgkHiTiaadcfadaWgaaWcbaGa amyyaiaadsgacaWGObaabeaakiaacMcaaaa@5523@
    Where,
    A r e a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk hacaWGLbGaamyyaaaa@3983@
    Area of the secondary surface
    P a d h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGHbGaamizaiaadIgaaeqaaaaa@39B3@
    Penetration into the adhesion zone
    G a p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadg gacaWGWbaaaa@389D@
    Contact gap as calculated in Comment 3

    The adhesive spring ruptures as the node exits the adhesion zone and will be recreated if the node enters the contact zone again.

    Viscous resistive forces are applied in the tangential direction when the secondary nodes enter into the adhesion zone. A viscous tangential opposing force is applied instead of a friction force and is calculated as:(12)
    F T = ( V i s c A d h F a c t ) V i s c F l u i d A r e a 1 2 G a p V r e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubaabeaakiabg2da9iabgkHiTiaacIcacaWGwbGaamyA aiaadohacaWGJbGaamyqaiaadsgacaWGObGaamOraiaadggacaWGJb GaamiDaiaacMcadaWcaaqaaiaadAfacaWGPbGaam4CaiaadogacaWG gbGaamiBaiaadwhacaWGPbGaamizaiabgwSixlaadgeacaWGYbGaam yzaiaadggaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaadEeacaWG HbGaamiCaaaacaWGwbWaaSbaaSqaaiaadkhacaWGLbGaamiBaaqaba aaaa@5B18@
    Where,
    A r e a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk hacaWGLbGaamyyaaaa@3983@
    Area of the secondary surface
    V r e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGYbGaamyzaiaadYgaaeqaaaaa@39D0@
    Penetration into the adhesion zone
    G a p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadg gacaWGWbaaaa@389D@
    Contact gap


    Figure 11.