/FAIL/CONNECT

Block Format Keyword Describes the failure model for CONNECTION material with displacement criteria and/or energy criteria.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/CONNECT/mat_ID/unit_ID
u ¯ maxN MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamOtaaqabaaaaa@3C4D@ expN α N R_fct_IDN Ifail Ifail_so ISYM
u ¯ maxT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaa@3C53@ expT α T R_fct_IDT      
EImax ENmax ETmax Nn Nt
Tmax Nsoft AREAscale        
Optional Line
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID                  

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
u ¯ max T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaa@3C53@ Failure relative displacement in normal direction.

Default = 1030 (Real)

 
expN Failure exponent parameter in normal direction.

Default = 1.0 (Real)

 
α N Normal direction scale factor.

Default = 1.0 (Real)

 
R_fct_IDN Identifier for f N ( u ¯ ˙ N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaad6eaaeqaaOWaaeWaceaaceWG1bGbaeHbaiaadaWgaaWc baGaamOtaaqabaaakiaawIcacaGLPaaaaaa@3C01@ failure scale factor in normal direction vs displacement rate function.

(Integer)

 
Ifail Failure formulation flag. 2
= 0 (Default)
Uni-directional failure (uncoupled failure formulation).
= 1
Multi-directional failure (coupled failure formulation).

(Integer)

 
Ifail_so Solid failure flag.
= 1 (Default)
Solid element is deleted, when one integration point reaches the failure criteria.
= 2
Solid element is deleted, when all integration points reach the failure criteria.

(Integer)

 
ISYM Rupture deactivation flag for compression.
= 0 (Default)
Same behavior in tension and compression.
= 1
Deactivation of failure in case of compression.

(Integer)

 
u ¯ max T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaa@3C53@ Failure relative displacement in tangential plane.

Default = 1030 (Real)

 
expT Failure exponent parameter in tangential plane.

Default = 1.0 (Real)

 
α T Scale factor in tangential plane.

Default = 1.0 (Real)

 
R_fct_IDT Identifier for f T ( u ¯ ˙ T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaadsfaaeqaaOWaaeWaceaaceWG1bGbaeHbaiaadaWgaaWc baGaamivaaqabaaakiaawIcacaGLPaaaaaa@3C0D@ failure scale factor in tangential plane vs displacement rate function.

(Integer)

 
EImax Failure internal energy, per surface unit.

Default = 1030 (Real)

[ kg s 2 ]
ENmax Normal failure internal energy, per surface unit.

Default = 1030 (Real)

[ kg s 2 ]
ETmax Tangential failure internal energy, per surface unit.

Default = 1030 (Real)

[ kg s 2 ]
Nn Exponent for normal energy failure criteria.

Default = 1.0 (Real)

 
Nt Exponent for tangential energy failure criteria.

Default = 1.0 (Real)

 
Tmax Duration parameter for energy failure criteria.

(Real)

 
Nsoft Softening exponent for failure.

Default = 1.0 (Real)

 
AREAscale Failure scale factor for area increase. 6

Default = 0.0, this option is not used (Real)

 
fail_ID Failure criteria identifier. 4

(Integer, maximum 10 digits)

 

Example (Spotweld)

#RADIOSS STARTER
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW59/1/1
spotweld
#              RHO_I
              7.9E-9
#                  E                   G     Imass
               21000               21000         0
# NB_funct   Fsmooth                Fcut
         1         1                   0
# YFun_IDN  YFun_IDT        SR_reference        Fscale_yield
         1         2                   0                   0
/FAIL/CONNECT/1
#          EPS_MAX_N               EXP_N             ALPHA_N R_fct_IDN     Ifail  Ifail_so      ISYM
                   1                   0                   0         0         0         1         0
#          EPS_MAX_T               EXP_T             ALPHA_T R_fct_IDT
                 1.8                   0                   0         0
#              EIMAX               ENMAX               ETMAX                  Nn                  Nt
                   0                   0                   0                   0                   0
#               Tmax               Nsoft           AREAscale
                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
New_function
#                  X                   Y
                   0                 250                                                            
                   1                 350                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
New_function
#                  X                   Y
                   0                 350                                                            
                   1                 350                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. This failure model is compatible only with the connection material, /MAT/LAW59 (CONNECT).
  2. Failure criteria:

    Solid element failure will occur when displacement values reach the criteria, or when the internal energy reaches the failure internal energy value.

    Ifail control coupled or uncoupled failure formulation for are exclusive with each other. Displacement and energy criteria can be used simultaneously. Both energy criteria can be used simultaneously (based on EImax and energy in both directions separately).
    • Ifail =0: Uni-directional formulation (uncoupled failure formulation)
      For displacement criteria:(1)
      u ¯ i f ( u ¯ ˙ ) > u ¯ m a x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae badaWgaaWcbaGaamyAaaqabaGccqGHflY1ciGGMbGaciikaiqadwha gaqegaGaaiaacMcacqGH+aGpceWG1bGbaebadaWgaaWcbaGaaiyBai aacggacaGG4bGaaiyAaaqabaaaaa@454D@

      with i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbaaaa@39C5@ = 33 for normal direction and 13 or 23 for tangent directions.

      For energy criteria:(2)
      E n > E N m a x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaad6gaaeqaaOGaeyOpa4Jaamyraiaad6eadaWgaaWcbaGa aiyBaiaacggacaGG4baabeaaaaa@3EFD@
      or, for each direction:(3)
      E t > E T m a x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadshaaeqaaOGaeyOpa4JaamyraiaadsfadaWgaaWcbaGa aiyBaiaacggacaGG4baabeaaaaa@3F09@
      or, for total energy:(4)
      E ( t ) > E I m a x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaae WaaeaacaWG0baacaGLOaGaayzkaaGaeyOpa4JaamyraiaadMeadaWg aaWcbaGaaiyBaiaacggacaGG4baabeaaaaa@4051@
    • Ifail=1: Multi-directional formulation (coupled failure formulation)
      For displacement criteria:(5)
      | u ¯ N u ¯ max N α N f N ( u ¯ ˙ N ) | exp N + | u ¯ T u ¯ max T α T f T ( u ¯ ˙ T ) | exp T > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdiqaam aalaaabaGabmyDayaaraWaaSbaaSqaaiaad6eaaeqaaaGcbaGabmyD ayaaraWaaSbaaSqaaiGac2gacaGGHbGaaiiEaiaad6eaaeqaaaaaki abgwSixlabeg7aHnaaBaaaleaacaWGobaabeaakiabgwSixlGacAga daWgaaWcbaGaamOtaaqabaGcdaqadiqaaiqadwhagaqegaGaamaaBa aaleaacaWGobaabeaaaOGaayjkaiaawMcaaaGaay5bSlaawIa7amaa CaaaleqabaGaciyzaiaacIhacaGGWbWaaSbaaWqaaiaad6eaaeqaaa aakiaabUcadaabdiqaamaalaaabaGabmyDayaaraWaaSbaaSqaaiaa dsfaaeqaaaGcbaGabmyDayaaraWaaSbaaSqaaiGac2gacaGGHbGaai iEamaaBaaameaacaWGubaabeaaaSqabaaaaOGaeyyXICTaeqySde2a aSbaaSqaaiaadsfaaeqaaOGaeyyXICTaciOzamaaBaaaleaacaWGub aabeaakmaabmGabaGabmyDayaaryaacaWaaSbaaSqaaiaadsfaaeqa aaGccaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaaciGGLb GaaiiEaiaacchadaWgaaadbaGaamivaaqabaaaaOGaeyOpa4JaaGym aaaa@6F89@
      For energy criteria:(6)
      ( E n E N max ) N n + ( E t E T max ) N t > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaeWaaeaadaWcaaqaaiaadweacaWGUbaabaGaamyraiaad6eadaWg aaWcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaad6eadaWgaaadbaGaamOBaaqabaaaaOGaey4kaSYa aeWaaeaadaWcaaqaaiaadweacaWG0baabaGaamyraiaadsfadaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaad6eadaWgaaadbaGaamiDaaqabaaaaOGaeyOpa4JaaG ymaaaa@4FB1@

      With E N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamyraiaad6eaaaa@3A49@ and E T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamyraiaad6eaaaa@3A49@ being the energy in the normal and the tangential direction, respectively.

  3. A damage variable is defined, as:(7)
    D 1 = 0 t E ( t ) E I max | E ( t ) E I max d t
    (8)
    D 2 = 0 t C ( t ) | C ( t ) 1 d t
    (9)
    D max = m a x ( D 1 , D 2 )
    The element is deleted (or stress in local integration point is set to zero), if:(10)
    D max T max

    (if T max is equal to default value, failure is immediate).

    Otherwise, when T max > D max > 0 , softening is applied as follows (for all directions):(11)
    σ = σ ( 1 D T max ) N s o f t

    The energy failure parameter will be activated as of input version 120 in /BEGIN.

  4. fail_ID is used with /STATE/BRICK/FAIL and /INIBRI/FAIL. There is no default value. If the line is blank, no value is output for the failure model variables in the /INIBRI/FAIL (written in .sta file with /STATE/BRICK/FAIL option).
  5. The following animation (/ANIM/BRICK) and time history (/TH/BRICK) outputs are available using USR (maximum value over integration points):
    EImax (only) ENmax or ETmax (only) EImax and

    (ENmax or ETmax)

    USR1 E I E I max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaSaaaeaacaWGfbGaamysaaqaaiaadweacaWGjbWaaSbaaSqaaiGa c2gacaGGHbGaaiiEaaqabaaaaaaa@3EEC@ max [ ( E n E N max ) N n + ( E t E T max ) N t ,   E I E I max ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaciyBaiaacggacaGG4bWaamWaaeaadaqadaqaamaalaaabaGaamyr aiaad6gaaeaacaWGfbGaamOtamaaBaaaleaaciGGTbGaaiyyaiaacI haaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOtamaaBaaa meaacaWGUbaabeaaaaGccqGHRaWkdaqadaqaamaalaaabaGaamyrai aadshaaeaacaWGfbGaamivamaaBaaaleaaciGGTbGaaiyyaiaacIha aeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOtamaaBaaame aacaWG0baabeaaaaGccaGGSaGaaeiiamaalaaabaGaamyraiaadMea aeaacaWGfbGaamysamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaa aaaOGaay5waiaaw2faaaaa@5A51@
    USR2 ( E n E N max ) N n + ( E t E T max ) N t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaeWaaeaadaWcaaqaaiaadweacaWGUbaabaGaamyraiaad6eadaWg aaWcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaad6eadaWgaaadbaGaamOBaaqabaaaaOGaey4kaSYa aeWaaeaadaWcaaqaaiaadweacaWG0baabaGaamyraiaadsfadaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaad6eadaWgaaadbaGaamiDaaqabaaaaaaa@4DE4@ ( E n E N max ) N n + ( E t E T max ) N t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaeWaaeaadaWcaaqaaiaadweacaWGUbaabaGaamyraiaad6eadaWg aaWcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaad6eadaWgaaadbaGaamOBaaqabaaaaOGaey4kaSYa aeWaaeaadaWcaaqaaiaadweacaWG0baabaGaamyraiaadsfadaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaad6eadaWgaaadbaGaamiDaaqabaaaaaaa@4DE4@
    Where,
    EI
    Internal energy per connection element area
    En
    Internal energy in the normal direction per connection element area
    Et
    Internal energy in the shear direction per connection element area
      Ifail=0 Ifail=1
    USR3 max [ f N ( ε ˙ N ) ε N ε max N ,    f T ( ε ˙ T ) ε T ε max T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yyaiaacIhadaWadaqaaiGacAgadaWgaaWcbaGaamOtaaqabaGcdaqa daqaaiqbew7aLzaacaWaaSbaaSqaaiaad6eaaeqaaaGccaGLOaGaay zkaaGaeyyXIC9aaSaaaeaacqaH1oqzdaWgaaWcbaGaamOtaaqabaaa keaacqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4bGaamOtaaqaba aaaOGaaiilaiaabccacaqGGaGaciOzamaaBaaaleaacaWGubaabeaa kmaabmaabaGafqyTduMbaiaadaWgaaWcbaGaamivaaqabaaakiaawI cacaGLPaaacqGHflY1daWcaaqaaiabew7aLnaaBaaaleaacaWGubaa beaaaOqaaiabew7aLnaaBaaaleaaciGGTbGaaiyyaiaacIhacaWGub aabeaaaaaakiaawUfacaGLDbaaaaa@5EBC@ f N ( ε ˙ N ) ε N ε max N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaad6eaaeqaaOWaaeWaaeaacuaH1oqzgaGaamaaBaaaleaa caWGobaabeaaaOGaayjkaiaawMcaaiabgwSixpaalaaabaGaeqyTdu 2aaSbaaSqaaiaad6eaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiGac2ga caGGHbGaaiiEaiaad6eaaeqaaaaaaaa@4719@
    USR4 f T ( ε ˙ T ) ε T ε max T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaadsfaaeqaaOWaaeWaaeaacuaH1oqzgaGaamaaBaaaleaa caWGubaabeaaaOGaayjkaiaawMcaaiabgwSixpaalaaabaGaeqyTdu 2aaSbaaSqaaiaadsfaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiGac2ga caGGHbGaaiiEaiaadsfaaeqaaaaaaaa@4731@ c 4 = f T ( ε ˙ T ) ε T ε max T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaaG inaiabg2da9iGacAgadaWgaaWcbaGaamivaaqabaGcdaqadaqaaiqb ew7aLzaacaWaaSbaaSqaaiaadsfaaeqaaaGccaGLOaGaayzkaaGaey yXIC9aaSaaaeaacqaH1oqzdaWgaaWcbaGaamivaaqabaaakeaacqaH 1oqzdaWgaaWcbaGaciyBaiaacggacaGG4bGaamivaaqabaaaaaaa@49DD@
    USR5   | ε N ε max N α N f N ( ε ˙ N ) | exp N + | ε T ε max T α T f T ( ε ˙ T ) | exp T > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdiqaam aalaaabaGaeqyTdu2aaSbaaSqaaiaad6eaaeqaaaGcbaGaeqyTdu2a aSbaaSqaaiGac2gacaGGHbGaaiiEaiaad6eaaeqaaaaakiabgwSixl abeg7aHnaaBaaaleaacaWGobaabeaakiabgwSixlGacAgadaWgaaWc baGaamOtaaqabaGcdaqadiqaaiqbew7aLzaacaWaaSbaaSqaaiaad6 eaaeqaaaGccaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaa ciGGLbGaaiiEaiaacchadaWgaaadbaGaamOtaaqabaaaaOGaae4kam aaemGabaWaaSaaaeaacqaH1oqzdaWgaaWcbaGaamivaaqabaaakeaa cqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4bWaaSbaaWqaaiaads faaeqaaaWcbeaaaaGccqGHflY1cqaHXoqydaWgaaWcbaGaamivaaqa baGccqGHflY1ciGGMbWaaSbaaSqaaiaadsfaaeqaaOWaaeWaceaacu aH1oqzgaGaamaaBaaaleaacaWGubaabeaaaOGaayjkaiaawMcaaaGa ay5bSlaawIa7amaaCaaaleqabaGaciyzaiaacIhacaGGWbWaaSbaaW qaaiaadsfaaeqaaaaakiabg6da+iaaigdaaaa@7309@
    USR6 S O F T = ( 1 D T max ) N s o f t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4uaiaad+eacaWGgbGaamivaiabg2da9maabmGabaGaaGymaiab gkHiTmaalaaabaGaamiraaqaaiaadsfadaWgaaWcbaGaciyBaiaacg gacaGG4baabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6ea daWgaaadbaGaam4Caiaad+gacaWGMbGaamiDaaqabaaaaaaa@4A0F@ S O F T = ( 1 D T max ) N s o f t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeeu0xXdbb a9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4uaiaad+eacaWGgbGaamivaiabg2da9maabmGabaGaaGymaiab gkHiTmaalaaabaGaamiraaqaaiaadsfadaWgaaWcbaGaciyBaiaacg gacaGG4baabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6ea daWgaaadbaGaam4Caiaad+gacaWGMbGaamiDaaqabaaaaaaa@4A0F@
  6. The area is calculated as the mean value of the upper and lower surface of the solid element. If the actual area reaches the value of initial area multiplied by AREAscale factor, the whole element will be deleted. If the elements attached to the connect elements fail, this option can be used to prevent shooting nodes due to large deformation of the connect elements.