Time Histories

Block Format Keyword Describes the time history output request.

In order to get time history data in T-file /TFILE or /@TFILE with Δ T h i s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam ivamaaBeaaleaacaWGObGaamyAaiaadohaaeqaaaaa@3B35@ (timefrequency) must be defined in Radioss Engine.

The table below lists the available keywords and variables.

TH Output Keywords & Variables

Keyword Object saved Variables
  Global variables IE, KE, TE, TTE, DTE, RKE, CE, HE, EFW, XMOM, YMOM, ZMOM, MASS, DT, SIE, TER, DTE_REL, VX, VY, VZ, CE_ELAST, CE_FRIC, CE_DAMP
/TH/ACCEL Accelerometer AX, AY, AZ, WX, WY, WZ
/TH/BEAM Beams OFF, F1, F2, F3, M1, M2, M3, IE
/TH/BRIC Solids OFF, SX, SY, SZ, SXY, SYZ, SXZ, LSX, LSY, LSZ, LSXY, LSYZ, LSXZ, IE, DENS, BULK, VOL, PLAS, TEMP, PLSR, DAM1, DAM2, DAM3, DAM4, DAM5, DAMA, SA1, SA2, SA3, CR, CAP, K0, RK, TD, EFIB, ISTA, VPLA, BFRAC, WPLA, SFIB, EPSXX, EPSYY, EPSZZ, EPSXY, EPSXZ, EPSYZ

SXi, SYi, SZi, SXYi, SYZi, SXZi (i=1,8)

LSXi, LSYi, LSZi, LSXYi, LSYZi, LSXZi (i=1,8), USRi (i=1,60)

SXijk, SYijk, SZijk, SXYijk, SYZijk, SXZijk, EPijk (i=1,3; j=1,9; k=1,3)

SXiUk, SYiUk, SZiUk, SXYiUk, SXZiUk, SYZiUk, EPiUk (i=1,3; k=1,3)

SXiDk, SYiDk, SZiDk, SXYiDk, SXZiDk, SYZiDk, EPiDk (i=1,3; k=1,3)

USR1_ijk, USR2_ijk, USR3_ijk, USR4_ijk, USR5_ijk, USR6_ijk, USR7_ijk, USR8_ijk, USR9_ijk (i=1,3; j=1,9; k=1,3)

E11_ik_j, E12_ik_j, E13_ik_j, E22_ik_j, E23_ik_j, E33_ik_j (i=1,3; k=1,3; j=1,200)

S11_ik_j, S12_ik_j, S13_ik_j, S22_ik_j, S23_ik_j, S33_ik_j (i=1,3; k=1,3; j=1,200)

/TH/CYL_JO Cylindrical joints FX, FY, FZ, MX, MY, MZ, F, M
/TH/FRAME Frame OX, OY, OZ, R11, R12, R13, R21, R22, R23, R31, R32, R33

VX, VY, VZ, VRX, VRY, VRZ, AX, AY, AZ, ARX, ARY, ARZ

/TH/FXBODY Flexible body IE, KE, EFW, DE
/TH/GAUGE Gauges P, IE, DENS
/TH/INTER Interface FNX, FNY, FNZ, FTX, FTY, FTZ, SFW (only interface types 14 and 15)

Following variables are only for interface types 7, 10 and their Sub interfaces (/INTER/SUB):

|FNX|, |FNY|, |FNZ|, ||FN||, |FX|, |FY|, |FZ|, ||F||, MX, MY, MZ

/TH/MODE Flexible body local modes D, V, A
/TH/MONVOL Monitored volume

Airbag

MASS, VOL, P, A, T, AO, UO, AC, UC, CP, CV, GAMA

AO1, BO1, UO1, MO1, HO1

AO2, BO2, UO2, MO2, HO2

AO3, BO3, UO3, MO3, HO3

AO4, BO4, UO4, MO4, HO4

AO5, BO5, UO5, MO5, HO5

AO6, BO6, UO6, MO6, HO6

AO7, BO7, UO7, MO7, HO7

AO8, BO8, UO8, MO8, HO8

AO9, BO9, UO9, MO9, HO9

AO10, BO10, UO10, MO10, HO10

/TH/NODE Nodes DX, DY, DZ, VX, VY, VZ, AX, AY, AZ

VRX, VRY, VRZ, ARX, ARY, ARZ, X, Y, Z, TEMP

REACX, REACY, REACZ, REACXX, REACYY, REACZZ

/TH/NSTRAND Multi-strand OFF, FX, LX, IE
/TH/PART Parts IE, KE, XMOM, YMOM, ZMOM, MASS, HE

TURBKE, XCG, YCG, ZCG, XXMOM, YYMOM, ZZMOM

IXX, IYY, IZZ, IXY, IYZ, IZX, RIE, KERB, RKERB, RKE

/TH/QUAD 2D quads OFF, SX, SY, SZ, SXY, SYZ, SXZ, IE, DENS, BULK, VOL, PLAS, TEMP, PLSR, DAM1, DAM2, DAM3, DAM4, DAM5, DAMA, SA1, SA2, SA3, CR, CAP, K0, RK, TD, EFIB, ISTA, VPLA, BFRAC, WPLA, SFIB

LSX, LSY, LSZ, LSXY, LSXZ, LSYZ

/TH/RBODY Rigid body FX, FY, FZ, MX, MY, MZ, RX, RY, RZ, FXI, FYI, FZI, MXI, MYI, MZI
/TH/RWALL Rigid wall FNX, FNY, FNZ, FTX, FTY, FTZ
/TH/SECTIO Section FNX, FNY, FNZ, FTX, FTY, FTZ, M1, M2, M3, WORK, WORKR, FX_error, MX_error, MX, MY, MZ, F1, F2, F3, CX, CY, CZ
/TH/SH3N 3 node shells F1, F2, F12, Q1, Q2, M1, M2, M12, IEM, IEB, OFF, THIC, EMIN, EMAX, EPSD, E1, E2, E12, SH1, SH2, K1, K2, K12, USRi (i=1,60)

USRII_JJ (II=1,60; JJ=1,99), USRII_JKK (II=1,60; J=1,4; KK=1,99)

SX_JJ, SY_JJ, SXY_JJ, SYZ_JJ, SZX_JJ (JJ=1,99)

/TH/SHEL 4 node shells F1, F2, F12, Q1, Q2, M1, M2, M12, IEM, IEB, OFF, THIC, EMIN, EMAX, EPSD, E1, E2, E12, SH1, SH2, K1, K2, K12, USRi (i=1,60)

USRII_JJ (II=1,60; JJ=1,99), USRII_JKK (II=1,60; J=1,4; KK=1,99)

SX_JJ, SY_JJ, SXY_JJ, SYZ_JJ, SZX_JJ (JJ=1,99)

/TH/SPH_FLOW SPH inlet/outlet conditions FLOW
/TH/SPRING Springs OFF, FX, FY, FZ, MX, MY, MZ, LX, LY, LZ, RX, RY, RZ, IE, F1, F2
/TH/SUBS Subsets IE, KE, XMOM, YMOM, ZMOM, MASS, HE

TURBKE, XCG, YCG, ZCG, XXMOM, YYMOM, ZZMOM

IXX, IYY, IZZ, IXY, IYZ, IZX, RIE, KERB, RKERB, RKE

/TH/TRUSS Trusses OFF, F, IE, A, L, PLAS
SPH_FLOW SPH inlet/outlet conditions FLOW

Output for Global Variables

  • IE: Global internal energy
  • KE: Global kinetic energy
  • TE: Total energy: T E = I E + K E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaamyraiabg2da9iaadMeacaWGfbGaey4kaSIaam4saiaa dweaaaa@3CD4@
  • TER: Rotational total energy: T E R = I E + K E + R K E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaamyraiaadkfacqGH9aqpcaWGjbGaamyraiabgUcaRiaa dUeacaWGfbGaey4kaSIaamOuaiaadUeacaWGfbaaaa@40FE@
  • TTE: Translational total energy: T T E = I E + K E + R K E + C E + H E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaamivaiaadweacqGH9aqpcaWGjbGaamyraiabgUcaRiaa dUeacaWGfbGaey4kaSIaamOuaiaadUeacaWGfbGaey4kaSIaam4qai aadweacqGHRaWkcaWGibGaamyraaaa@45ED@
  • DTE: Delta total energy: D T E = T T E E F W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebGaamivaiaadweacqGH9aqpcaWGubGaamivaiaadweacqGH sislcaWGfbGaamOraiaadEfaaaa@3F63@
  • D T E _ R E L = T T E E F W T T E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebGaamivaiaadweacaGGFbGaamOuaiaadweacaWGmbGaeyyp a0ZaaSaaaeaacaWGubGaamivaiaadweacqGHsislcaWGfbGaamOrai aadEfaaeaacaWGubGaamivaiaadweaaaaaaa@4544@
  • RKE: Global rotational kinetic energy
  • CE: Global contact energy = CE_ELAST + CE_FRIC + CE_DAMP
  • CE_ELAST: Elastic contact energy which is the recoverable energy stored in the contact penalty springs.
  • CE_FRIC: Frictional contact energy.
  • CE_DAMP: Damping contact energy. Only calculated for Interfaces TYPE2, 10, 18, 21, 23, and 25
  • HE: Global hourglass energy 5
  • EFW: Global external work
  • XMOM: Global momentum in X direction in global reference frame
  • YMOM: Global momentum in Y direction in global reference frame
  • ZMOM: Global momentum in Z direction in global reference frame
  • MASS: Global mass of the structure, including lumped mass and mass added due to mass scaling from using /DT/NODA/CST
  • DT: Time step
  • SIE: Global spring internal energy
  • VX: X velocity
  • VY: Y velocity
  • VZ: Z velocity

Comments

  1. Global variables are always written and do not need to be requested.
  2. Variable names must be left justified.
  3. In 2D axisymmetrical computation, energies are given per radian.
  4. Global internal energy includes all material internal energy and global spring internal energy, but not spring rotational internal energy.
  5. Global hourglass energy output only includes perturbation hourglass energy for shell elements, Ishell = 1 – 4, and Ish3n = 1, 2 and solid elements Isolid = 1, 2. Numerical damping from Ishell = 12, 24 and Ish3n = 30, 31, is not included in global hourglass energy but can be output /TH/PART, hourglass energy output.
  6. Additional time history files (Runname_run#_i.thy) with different frequencies and variables can be generated through the option /iTH (where i = A to I). These options use the same keyword format and variables as option /TH, except for the addition of the prefix (/ATH, /BTH ...). The frequency at which data is written to these additional files is defined in the Radioss Engine option /ATFILE.