RD-E: 4300 多項式EOSを用いた理想気体のモデル化

理想気体のモデル化に多項式状態方程式が用いられます。圧力またはエネルギーは、絶対値または相対値であることが可能です。材料則LAW6(/MAT/HYDRO)がこれらのケースの材料カードの構築に用いられます。

この例題の目的は、数値的圧力、内部エネルギー、理想気体材料則の音速をプロットすることにあります。理論界との比較がなされます。

ex43_perfect_gas_model
図 1.
多項式EOSはRadioss流体力学的圧力を計算するためにしばしば用いられます。これは圧縮で3次、膨張で線形です。(1) ex43_polynomial_eq
ここで、(2) E = E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGG UbGaaiiDaaqabaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaaaa a@4051@
および (3) μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaaaaa@41BB@
材料LAW6(/MAT/HYDRO)は静水圧の計算にこの式を使用します。絶対値または相対変化を考慮することが可能です(表 1)。この例題では以下のケースのそれぞれののために材料コントロールカードをどのように構築するかを紹介します:
表 1. 理想気体のモデリング定式化
ケース 数学的モデリング 圧力 エネルギー
1 P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@ 絶対値 絶対値
2 Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjk aiaawMcaaaaa@3FCB@ 相対値 絶対値
3 Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyr aaGaayjkaiaawMcaaaaa@4131@ 相対値 相対値
4 P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyraaGaayjk aiaawMcaaaaa@3FCB@ 絶対値 相対値

これらの定式化の出力を理論解と比較するため圧縮 / 膨張の単純なテストが行われます。

使用されるオプションとキーワード

要素圧力、密度と内部エネルギー密度は、時刻歴ファイルに保存されます。

入力ファイル

本例題で使用される入力ファイルは下記のとおり:
Model 1
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/01-Pabsolute_Eabsolute/*
Model 2
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/02-Prelative_Eabsolute/*
Model 3
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/03-Prelative_Erelative/*
Model 4
<install_directory>/hwsolvers/demos/radioss/example/43_perfect_gas_polynomial_eos/04-Pabsolute_Erelative/*

モデル概要

このテストは球状の膨張と圧縮を受ける理想気体の要素体積からなります。

ex43_cube
図 2.
初期条件を以下に記します:
P 0
1e5 Pa
V 0
1000 m3
ρ 0
1.204 [ kg m 3 ]
μ 0
0

流体は理想気体と仮定します。体積は純圧縮 ( 1 < μ < 0 ) とそれに続く膨張 ( 0 < μ ) 図 3)を考慮するために3方向に変化させます。

このテストは1つのALE要素(8節点ソリッド)と多項式EOSでモデル化されます。

圧力、内部エネルギーと音速の変化が数値計算出力と理論解の間で比較されます。

ex43_elementary_volume_change
図 3. 要素体積変化長さは/IMPDISPカードで修正され、その V μ への影響がプロットされます。

多項式 EOS

多項式EOSが材料則6(/MAT/HYDRO)の中で流体力学的圧力の計算に用いられます。これは圧縮で3次、膨張で線形です。(4)
ex43_polynomial_eq
ここで、
P
流体力学的圧力
(5) E = E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbGaeyypa0ZaaSaaaeaacaWGfbWaaSraaSqaaiGacMgacaGG UbGaaiiDaaqabaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaaaa a@4052@
および(6) μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaaaaa@41BB@
{ C i } i = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGdbWaaSbaaSqaaiaadMgaaeqaaaGccaGL7bGaayzFaaGaaGjcVlaa ysW7caWGPbGaeyypa0JaaGimaiaac6cacaaI1aaaaa@4150@ 流体力係数と呼ばれる入力フラグです。材料の挙動に対する仮説により、これらの係数を決めることが可能となります:

この例題は理想気体のモデル化のみに焦点を当てます。

モデリングの方法

1つのALEソリッド要素が用いられます。材料は、ソリッドの節点がLagrangeであると定義することにより要素内に閉じ込められます。それぞれの面に対して、4節点に強制変位が法線方向に与えられます。

材料則LAW6(/MAT/HYDRO)が用いられ、流体力学的粘性流体材料を記述します。
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW6/mat_ID/unit_IDまたは/MAT/HYDRO/mat_ID/unit_ID
mat_title
ρ i              
υ                
C0 C1 C2 C3    
Pmin Psh            
C4 C5 E0        

圧力シフト

材料則LAW6ではフラグPshを導入し、多項式状態方程式の圧力計算シフトを可能にしています:(7)
ex43_pressure_shift

Radioss Engineは、C0フラグと計算された圧力 P ( μ , E ) -Pshのオフセットでシフトします。

最小圧力

(8) P min = lim μ1 P( μ,E ) P sh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyypa0ZaaCbeaeaaciGG SbGaaiyAaiaac2gaaSqaaiabeY7aTjabgkziUkabgkHiTiaaigdaae qaaOGaaGjbVlaadcfadaqadaqaaiabeY7aTjaacYcacaWGfbaacaGL OaGaayzkaaGaeyOeI0IaamiuamaaBaaaleaacaWGZbGaamiAaaqaba aaaa@4E25@

理論解は P m i n = 0 P a (絶対圧力)で、デフォルト値を-1030とすることで、相対圧力定式化の負の値を可能にしています。

フラグは-Pshで手動にてオフセットする必要があります。

結果

理論解

このセクションの目的は、圧力、内部エネルギーと音速を1つのパラメーター V または μ の関数としてプロットすることです。
  1. 圧力
    理想気体の圧力は以下で与えられます:(9) P V = ( γ 1 ) E int MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaamOvaiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGym aaGaayjkaiaawMcaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0b aabeaaaaa@4434@
    したがって:(10) d P ( V , E int ) = P V | E int d V + P E int | V d E int MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamiuamaabmaabaGaamOvaiaacYcacaWGfbWaaSbaaSqa aiGacMgacaGGUbGaaiiDaaqabaaakiaawIcacaGLPaaacqGH9aqpda abcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadAfaaaaa caGLiWoadaWgaaWcbaGaamyramaaBaaameaaciGGPbGaaiOBaiaacs haaeqaaaWcbeaakiaadsgacaWGwbGaey4kaSYaaqGaaeaadaWcaaqa aiabgkGi2kaadcfaaeaacqGHciITcaWGfbWaaSbaaSqaaiGacMgaca GGUbGaaiiDaaqabaaaaaGccaGLiWoadaWgaaWcbaGaamOvaaqabaGc caWGKbGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaaa@5E4A@
    Radiossは内部エネルギー変化の計算に等エントロピー過程の仮説を仮定します:(11) d E int = P d V
    この理論は以下の微分方程式を与えます:(12) d P d V = γ P V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadsgacaWGqbaabaGaamizaiaadAfaaaGaeyypa0Ja eyOeI0YaaSaaaeaacqaHZoWzcaWGqbaabaGaamOvaaaaaaa@41C3@
    これは y ' + γ / x = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG5bGaai4jaiabgUcaRiabeo7aNjaac+cacaWG4bGaeyypa0Ja aGimaaaa@4079@ という形式を持ち、一般解は次のとおりです:(13) y = C s t . x γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG5bGaeyypa0Jaam4qaiaadohacaWG0bGaaiOlaiaadIhadaah aaWcbeqaaiabgkHiTiabeo7aNbaaaaa@4204@
    圧力はポリトロープな状態にもあります:(14) P V γ = P V 0 0 γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaamOvamaaCaaaleqabaGaeq4SdCgaaOGaeyypa0Jaamiu amaaBeaaleaacaaIWaaabeaakiaadAfadaWgaaWcbaGaaGimaaqaba GcdaahaaWcbeqaaiabeo7aNbaaaaa@42D0@ (15) P ( V ) = P 0 ( V 0 V ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacaWGwbaacaGLOaGaayzkaaGaeyypa0Jaamiu amaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaaeaacaWGwbWaaS baaSqaaiaaicdaaeqaaaGcbaGaamOvaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiabeo7aNbaaaaa@44EE@

    ここで、 γ は材料定数です(熱容量の比)。原子の気体では、 γ =1.4。空気は主に2原子の気体からなるので、通常空気のガンマは1.4に設定します。

  2. 内部エネルギー
    式 9式 15から直接の結果を導けます:(16) E int ( V ) = P 0 V 0 γ ( γ 1 ) V γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGcdaqadaqa aiaadAfaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadcfadaWgaa WcbaGaaGimaaqabaGccaWGwbWaaSbaaSqaaiaaicdaaeqaaOWaaWba aSqabeaacqaHZoWzaaaakeaadaqadaqaaiabeo7aNjabgkHiTiaaig daaiaawIcacaGLPaaacaWGwbWaaWbaaSqabeaacqaHZoWzcqGHsisl caaIXaaaaaaaaaa@4EC7@
  3. 音速
    理想気体の音速は:(17) c = γ P / ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbGaeyypa0ZaaOaaaeaacqaHZoWzcaWGqbGaai4laiabeg8a YbWcbeaaaaa@3FCF@
    式 15 は体積に関する表現を与えます:(18) c = γ P 0 ρ 0 ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbGaeyypa0ZaaSaaaeaacqaHZoWzcaWGqbWaaSraaSqaaiaa icdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaabm aabaWaaSaaaeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOv aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabeo7aNjabgkHiTiaaig daaaaaaa@48AD@
理論解を下の表に記します。圧力、内部エネルギーと音速は V μ の両方で表現されます。
圧力(Pa) 内部エネルギー密度(J) 音速(m/s)
PREF(V) PREF( μ ) ρ eREF(V) ρ eREF( μ ) cREF(V) cREF( μ )
P 0 ( V 0 V ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaa dAfadaWgaaWcbaGaaGimaaqabaaakeaacaWGwbaaaaGaayjkaiaawM caamaaCaaaleqabaGaeq4SdCgaaaaa@40AF@ P 0 ( 1 + μ ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey4k aSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzaaaaaa@414C@ P 0 ( γ 1 ) ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadcfadaWgaaWcbaGaaGimaaqabaaakeaadaqadaqa aiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaaaaWaaeWaaeaada WcaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaakeaacaWGwbaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaeq4SdCMaeyOeI0IaaGymaaaaaa a@473F@ P 0 ( γ 1 ) ( 1 + μ ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadcfadaWgaaWcbaGaaGimaaqabaaakeaadaqadaqa aiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaaaaWaaeWaaeaaca aIXaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacqaH ZoWzcqGHsislcaaIXaaaaaaa@47DC@ γ P 0 ρ 0 ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaGcaaqaamaalaaabaGaeq4SdCMaamiuamaaBaaaleaacaaIWaaa beaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaam aalaaabaGaamOvamaaBaaaleaacaaIWaaabeaaaOqaaiaadAfaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzcqGHsislcaaIXaaaaa qabaaaaa@46CE@ γ P 0 ρ 0 ( 1 + μ ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaGcaaqaamaalaaabaGaeq4SdCMaamiuamaaBaaaleaacaaIWaaa beaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaai aaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaadaahaaWcbeqaaiab eo7aNjabgkHiTiaaigdaaaaabeaaaaa@476B@
対応するプロットは:

ex43_perfect_gas_pressure
図 4. 理想気体圧力

ex43_perfect_gas_internal_energy
図 5. 理想気体内部エネルギー

ex43_perfect_gas_sound_speed
図 6. 理想気体音速

材料コントロールカード

材料は理想気体と想定します。以下のケースが調査されます:
  • ケース1: 圧力とエネルギーの両方が絶対値: P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@
  • ケース2: 圧力が相対値でエネルギーが絶対値: Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjk aiaawMcaaaaa@3FCB@
  • ケース3: 圧力とエネルギーの両方が相対値 Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyr aaGaayjkaiaawMcaaaaa@4131@
  • ケース4: 圧力が絶対値でエネルギーが相対値: P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyraaGaayjk aiaawMcaaaaa@3FCB@

音速と時間ステップ

材料則6は流体の通常表現で音速を計算します:(19) c 2 = d P d ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWG KbGaamiuaaqaaiaadsgacqaHbpGCaaaaaa@402F@
これは μ の関数として書くことができます:(20) μ = ρ ρ 0 1 1 d ρ = 1 ρ 0 1 d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaGaeyO0H49aaSaaaeaaca aIXaaabaGaamizaiabeg8aYbaacqGH9aqpdaWcaaqaaiaaigdaaeaa cqaHbpGCdaWgaaWcbaGaaGimaaqabaaaaOWaaSaaaeaacaaIXaaaba GaamizaiabeY7aTbaaaaa@4F77@
したがって:(21) c 2 = 1 ρ 0 d P d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaalaaabaGaam izaiaadcfaaeaacaWGKbGaeqiVd0gaaaaa@43A0@
P の内部エネルギー E μ に関する全微分は:(22) d P ( μ , E ) = P μ | E d μ + P E | μ d E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamiuamaabmaabaGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaacqGH9aqpdaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaai abgkGi2kabeY7aTbaaaiaawIa7amaaBaaaleaacaWGfbaabeaakiaa ysW7caWGKbGaeqiVd0Maey4kaSYaaqGaaeaadaWcaaqaaiabgkGi2k aadcfaaeaacqGHciITcaWGfbaaaaGaayjcSdWaaSbaaSqaaiabeY7a TbqabaGccaWGKbGaamyraaaa@570F@
等エントロピー変換の場合(即ち可逆で断念の場合、体積 V での内部エネルギー E int と圧力 P は以下で与えられます:(23) d E int = P d V
E int E の関係を用いて以下が導かれます:(24) d E = P V 0 d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamyraiabg2da9iabgkHiTmaalaaabaGaamiuaaqaaiaa dAfadaWgaaWcbaGaaGimaaqabaaaaOGaamizaiaadAfaaaa@40F1@
μ は体積比に関して以下のように表せます:(25) μ = υ 0 υ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabew8a1naaBaaaleaacaaIWaaa beaaaOqaaiabew8a1baacqGHsislcaaIXaaaaa@41C9@
対壁変化に対する関数の変化も以下のように表せます:(26) d μ = V 0 V 2 d V = ( 1 + μ ) 2 V 0 d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaeqiVd0Maeyypa0JaeyOeI0YaaSaaaeaacaWGwbWaaSba aSqaaiaaicdaaeqaaaGcbaGaamOvamaaCaaaleqabaGaaGOmaaaaaa GccaWGKbGaamOvaiabg2da9iabgkHiTmaalaaabaWaaeWaaeaacaaI XaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaaGccaWGKbGaamOv aaaa@4E37@
単位体積当たりの内部エネルギー変化 E はその時:(27) d E = P ( 1 + μ ) 2 d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamyraiabg2da9iabgkHiTmaalaaabaGaamiuaaqaamaa bmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaaGccaWGKbGaeqiVd0gaaa@45D0@ (28) d P ( μ , E ) d μ = P μ | E + P ( 1 + μ ) 2 P E | μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadsgacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyr aaGaayjkaiaawMcaaaqaaiaadsgacqaH8oqBaaGaeyypa0ZaaqGaae aadaWcaaqaaiabgkGi2kaadcfaaeaacqGHciITcqaH8oqBaaaacaGL iWoadaWgaaWcbaGaamyraaqabaGccqGHRaWkdaWcaaqaaiaadcfaae aadaqadaqaaiaaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaaaaOWaaqGaaeaadaWcaaqaaiabgkGi2kaadc faaeaacqGHciITcaWGfbaaaaGaayjcSdWaaSbaaSqaaiabeY7aTbqa baaaaa@5A89@
最後に、音速は以下のように与えられます:(29) c 2 = 1 ρ 0 P μ | E + P ρ 0 ( 1 + μ ) 2 P E | μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaaeiaabaWaaS aaaeaacqGHciITcaWGqbaabaGaeyOaIyRaeqiVd0gaaaGaayjcSdWa aSbaaSqaaiaadweaaeqaaOGaey4kaSYaaSaaaeaacaWGqbaabaGaeq yWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey4kaSIa eqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakmaaei aabaWaaSaaaeaacqGHciITcaWGqbaabaGaeyOaIyRaamyraaaaaiaa wIa7amaaBaaaleaacqaH8oqBaeqaaaaa@5969@
この式を用いて、状態 P ( μ , E ) の特定の方程式の音速を計算できます。理想気体の場合は、各タイプの定式化(絶対または相対)について、EOSを次のように記述できます:(30) P ( μ , E ) = C 0 + C 1 μ + ( C 4 + C 5 μ ) E
式 29 は音速の計算に用いられます:(31) P μ | E = C 1 + C 5 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kabeY7a TbaaaiaawIa7amaaBaaaleaacaWGfbaabeaakiabg2da9iaadoeada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwda aeqaaOGaamyraaaa@46FC@ (32) P E | μ = C 4 + C 5 μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadwea aaaacaGLiWoadaWgaaWcbaGaeqiVd0gabeaakiabg2da9iaadoeada WgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwda aeqaaOGaeqiVd0gaaa@47EB@ (33) c 2 = C 1 + C 5 E ρ 0 + C 0 + C 1 μ + ( C 4 + C 5 μ ) E ρ 0 ( 1 + μ ) 2 ( C 4 + C 5 μ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWG dbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4qamaaBaaaleaaca aI1aaabeaakiaadweaaeaacqaHbpGCcaaIWaaaamaaBaaaleaaaeqa aOGaey4kaSYaaSaaaeaacaWGdbWaaSbaaSqaaiaaicdaaeqaaOGaey 4kaSIaam4qamaaBaaaleaacaaIXaaabeaakiabeY7aTjabgUcaRmaa bmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgUcaRiaadoeada WgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGLPaaacaWGfbaa baGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey 4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa kmaabmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgUcaRiaado eadaWgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGLPaaaaaa@63F4@
この計算は次にそれぞれの4ケースに適用されます。
表 2. 数値解析結果の音速対理論表現
ケース C0 C1 C4 C5 c2

理論値との比較
1 0 0 γ 1 γ 1 γ ( γ 1 ) E ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadweaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaaaa@42D6@ c = cREF
2 0 0 γ 1 γ 1 γ ( γ 1 ) E ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadweaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaaaa@42D6@ c = cREF
3 E 0 ( γ 1 ) E 0 ( γ 1 ) γ 1 γ 1 γ ( γ 1 ) ( E + E 0 ) ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaamaabmaabaGaamyraiabgUcaRiaadweadaWgaaWcba GaaGimaaqabaaakiaawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGa aGimaaqabaaaaaaa@46FB@ c = cREF
4 E 0 ( γ 1 ) E 0 ( γ 1 ) γ 1 γ 1 γ ( γ 1 ) ( E + E 0 ) ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaamaabmaabaGaamyraiabgUcaRiaadweadaWgaaWcba GaaGimaaqabaaakiaawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGa aGimaaqabaaaaaaa@46FB@ c = cREF

それぞれの4つの定式化に対して、Radiossにより計算された音速は理論値と一致しています。時間ステップとサイクル数は影響されません。

ケース1: 圧力とエネルギーの両方が絶対値

  1. 状態方程式
    状態方程式は以下のように書くことができます:(34) P = ( γ 1 ) E int V = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGL OaGaayzkaaWaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaai iDaaqabaaakeaacaWGwbaaaiabg2da9maabmaabaGaeq4SdCMaeyOe I0IaaGymaaGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiabeY 7aTbGaayjkaiaawMcaamaalaaabaGaamyramaaBaaaleaaciGGPbGa aiOBaiaacshaaeqaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaa aaaa@54B2@
    ここで、(35) E int | t = 0 = E 0 V 0 = P 0 V 0 γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaa aOGaayjcSdWaaSbaaSqaaiaadshacqGH9aqpcaaIWaaabeaakiabg2 da9iaadweadaWgaaWcbaGaaGimaaqabaGccaWGwbWaaSbaaSqaaiaa icdaaeqaaOGaeyypa0ZaaSaaaeaacaWGqbWaaSbaaSqaaiaaicdaae qaaOGaamOvamaaBaaaleaacaaIWaaabeaaaOqaaiabeo7aNjabgkHi Tiaaigdaaaaaaa@4DB5@
    この式を展開して多項式の係数を特定すると以下が導かれます:(36) P ( μ , E ) = ( C 4 + C 5 μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgU caRiaadoeadaWgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGL PaaacaWGfbaaaa@47CF@

    ここで、 C 4 = C 5 = ( γ 1 ) , E 0 = P 0 γ 1 , P s h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0Jaam4qamaaBeaa leaacaaI1aaabeaakiaaykW7cqGH9aqpdaqadaqaaiabeo7aNjabgk HiTiaaigdaaiaawIcacaGLPaaacaGGSaGaaGzbVlaadweadaWgaaWc baGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadcfadaWgaaWcbaGaaG imaaqabaaakeaacqaHZoWzcqGHsislcaaIXaaaaiaacYcacaaMf8Ua amiuamaaBaaaleaacaWGZbGaamiAaaqabaGccqGH9aqpcaaIWaaaaa@55D0@

  2. 対応する入力
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_IDまたは/MAT/HYDRO/mat_ID/unit_ID
    AbsolutePRESSURE_AbsoluteENERGY
    ρ i              
    υ                
    0 0 0 0    
    0 0            
    C4 = γ 1 1 C5 = γ 1 E 0 = P 0 γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaWG qbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeq4SdCMaeyOeI0IaaGymaa aaaaa@40BB@        
  3. 結果の出力
    表 3.
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK (P) P P0 圧力
    /TH (IE) E int ( = E x V 0 ) E 0 V 0 エネルギー
    /TH/BRICK (IE) E int / V E 0 圧力
  4. 理論界との比較
    理想気体圧力の数値解析結果は、時刻歴で与えられます。要素時刻歴(/TH/BRICK)でこれを表示できます。この結果を理論解と比較します。曲線は重ねて示されます。

    ex43_numerical_pressure_model1
    図 7. 数値的圧力、モデル1: P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー ( e l e m E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaamyramaaBaaaleaaci GGPbGaaiOBaiaacshaaeqaaaGccaGLOaGaayzkaaaaaa@45BC@ で、これは、モデルが単一要素であるためです。

    ex43_numerical_internal_energy_model1
    図 8. 数値的内部エネルギー、モデル1: P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@

ケース2: 圧力が相対値でエネルギーが絶対値

  1. 状態方程式
    理想気体の状態方程式は:(37) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaa laaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcba GaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@4EC9@
    参照値からの圧力計算は相対圧力を与えます:(38) Δ P = P ( μ , E ) P 0 = ( γ 1 ) ( 1 + μ ) E int V 0 P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbGaeyypa0JaamiuamaabmaabaGaeqiVd0Maaiil aiaadweaaiaawIcacaGLPaaacqGHsislcaWGqbWaaSbaaSqaaiaaic daaeqaaOGaeyypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGL OaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaay zkaaWaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqa baaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaakiabgkHiTiaadc fadaWgaaWcbaGaaGimaaqabaaaaa@576E@
    この式を展開して多項式の係数を特定すると以下が導かれます:(39) Δ P ( μ , E ) = P ( μ , E ) = P s h = P s h + ( C 4 + C 5 μ ) E

    ここで、 C 4 = C 5 = ( γ 1 ) , E 0 = P 0 γ 1 , P s h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0Jaam4qamaaBeaa leaacaaI1aaabeaakiaaykW7cqGH9aqpdaqadaqaaiabeo7aNjabgk HiTiaaigdaaiaawIcacaGLPaaacaGGSaGaaGzbVlaadweadaWgaaWc baGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadcfadaWgaaWcbaGaaG imaaqabaaakeaacqaHZoWzcqGHsislcaaIXaaaaiaacYcacaaMf8Ua amiuamaaBaaaleaacaWGZbGaamiAaaqabaGccqGH9aqpcaaIWaaaaa@55D0@

  2. 最小圧力(40) P ( μ , E ) 0 Δ P P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabgwMiZkaaicdacqGHshI3cqqHuoarcaWGqbGaeyyzImRaeyOeI0 IaamiuamaaBaaaleaacaaIWaaabeaaaaa@49EB@

    最小圧力は0でない値 P min = P 0 に設定される必要があります。

  3. 対応する入力
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_IDまたは/MAT/HYDRO/mat_ID/unit_ID
    RelativePRESSURE_AbsoluteENERGY
    ρ i              
    υ                
    0 0 0 0    
    -P0 P0            
    C4 = γ 1 C5 = γ 1 E 0 = P 0 γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaWG qbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeq4SdCMaeyOeI0IaaGymaa aaaaa@40BB@        
  4. 結果の出力
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK (P) ΔP 0 圧力
    /TH (IE) E int ( = E x V 0 ) E 0 V 0 エネルギー
    /TH/BRICK (IE) E int / V E 0 圧力
  5. 理論界との比較
    要素時刻歴(/TH/BRICK)は、Pshに対する相対圧力です。結果の曲線は、Psh値でシフトされ、0から開始します。

    ex43_numerical_pressure_model2
    図 9. 数値的圧力、モデル2: Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaaaaa@3F7F@
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー ( e l e m E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaamyramaaBaaaleaaci GGPbGaaiOBaiaacshaaeqaaaGccaGLOaGaayzkaaaaaa@45BC@ で、これは、モデルが単一要素であるためです。

    ex43_numerical_internal_energy_model2
    図 10. 数値的内部エネルギー、モデル2: Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaaaaa@3F7F@

ケース3: 圧力とエネルギーの両方が相対値

  1. 状態方程式
    理想気体の状態方程式は:(41) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaa laaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcba GaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@4EC9@
    初期内部エネルギーを導入することができます:(42) E int = E int + ( E int | t = 0 E int | t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGH9aqp caWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGHRaWkda qadaqaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaakmaa BaaaleaadaabbaqaaiaadshacqGH9aqpcaaIWaaacaGLhWoaaeqaaO GaeyOeI0IaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaOWa aSbaaSqaamaaeeaabaGaamiDaiabg2da9iaaicdaaiaawEa7aaqaba aakiaawIcacaGLPaaaaaa@559F@
    参照値からの圧力計算は以下を与えます:(43) P ( μ , E ) P 0 = Δ P = ( γ 1 ) ( 1 + μ ) ( Δ E + E 0 ) P 0
    ここで、(44) Δ E = E int E int | t = 0 V 0 E 0 = E int | t = 0 V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamyraiabg2da9maalaaabaGaamyramaaBaaaleaaciGG PbGaaiOBaiaacshaaeqaaOGaeyOeI0IaamyramaaBaaaleaaciGGPb GaaiOBaiaacshaaeqaaOWaaSraaSqaamaaeeaabaGaamiDaiabg2da 9iaaicdaaiaawEa7aaqabaaakeaacaWGwbWaaSbaaSqaaiaaicdaae qaaaaakiaaysW7caWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Za aSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGcda WgbaWcbaWaaqqaaeaacaWG0bGaeyypa0JaaGimaaGaay5bSdaabeaa aOqaaiaadAfadaWgaaWcbaGaaGimaaqabaaaaOWaaSbaaSqaaaqaba aaaa@5970@
    この式を展開して多項式の係数を特定すると以下が導かれます:(45) Δ P ( μ , Δ E ) = P ( μ , E ) P s h = C 0 P s h + C 1 μ + ( C 4 + C 5 μ ) Δ E
    ここで、 C 0 = C 1 = E 0 ( γ 1 ) C 4 = C 5 = γ 1 Δ E 0 = 0 P s h = P 0
  2. 最小圧力(46) P ( μ , E ) 0 Δ P P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabgwMiZkaaicdacqGHshI3caqGuoGaamiuaiabgwMiZkabgkHiTi aadcfadaWgaaWcbaGaaGimaaqabaaaaa@499F@

    最小圧力は0でない値 P min = P 0 に設定される必要があります。

  3. 対応する入力
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_IDまたは/MAT/HYDRO/mat_ID/unit_ID
    RelativePRESSURE_RelativeENERGY
    ρ i              
    υ                
    E 0 ( γ1 ) E 0 ( γ 1 ) 0 0    
    -P0 P0            
    C4 = γ 1 C5 = γ 1 0        
  4. 結果の出力
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK (P) Δ P 0 圧力
    /TH (IE) Δ E int ( = Δ E x V 0 ) 0 エネルギー
    /TH/BRICK (IE) Δ E int / V 0 圧力
  5. 理論界との比較
    要素時刻歴(/TH/BRICK)は、Pshに対する相対圧力です。結果の曲線は、Psh値でシフトされ、0から開始します。

    ex43_numerical_pressure_model3
    図 11. 数値的圧力、モデル3: Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0Maaiilaiaabs5acaWGfbaa caGLOaGaayzkaaaaaa@4099@
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー ( e l e m E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaamyramaaBaaaleaaci GGPbGaaiOBaiaacshaaeqaaaGccaGLOaGaayzkaaaaaa@45BC@ で、これは、モデルが単一要素であるためです。数値解析結果の内部エネルギーは初期エネルギーからの相対値で、絶対値から E 0 V 0 値だけシフトされ、0から開始します。

    ex43_numerical_internal_energy_model3
    図 12. 数値的内部エネルギー、モデル3: Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaqGuoGaamiuamaabmaabaGaeqiVd0Maaiilaiaabs5acaWGfbaa caGLOaGaayzkaaaaaa@4099@

ケース4: 圧力が絶対値でエネルギーが相対値

  1. 状態方程式
    理想気体の状態方程式は:(47) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaa laaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcba GaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@4EC9@
    初期内部エネルギーを導入することができます:(48) E int = E int + ( E int | t = 0 E int | t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGH9aqp caWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGHRaWkda qadaqaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaakmaa BaaaleaadaabbaqaaiaadshacqGH9aqpcaaIWaaacaGLhWoaaeqaaO GaeyOeI0IaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaOWa aSbaaSqaamaaeeaabaGaamiDaiabg2da9iaaicdaaiaawEa7aaqaba aakiaawIcacaGLPaaaaaa@559F@
    ここに、以下が導かれます:(49) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) ( E 0 + Δ E )
    この式を展開して多項式の係数を特定すると以下が導かれます:(50) P ( μ , E ) = C 0 + C 1 μ + ( C 4 + C 5 μ ) Δ E
    ここで、 C 0 = C 1 = E 0 ( γ 1 ) C 4 = C 5 = γ 1
  2. 対応する入力
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    /MAT/LAW6/mat_ID/unit_IDまたは/MAT/HYDRO/mat_ID/unit_ID
    AbsolutePRESSURE_RelativeENERGY
    ρ i              
    υ                
    E 0 ( γ 1 ) E 0 ( γ 1 ) 0 0    
    0 0            
    C4 = γ 1 C5 = γ 1 0        
  3. 結果の出力
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK (P) P P0 圧力
    /TH (IE) Δ E int ( = Δ E x V 0 ) 0 エネルギー
    /TH/BRICK (IE) Δ E int / V 0 圧力
  4. 理論界との比較
    要素時刻歴(/TH/BRICK)は、絶対圧力を与えます。この結果を理論解と比較します。曲線は重ねて示されます。

    ex43_numerical_pressure_model4
    図 13. 数値的圧力、モデル4: P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaaeiLdiaadweaaiaawIca caGLPaaaaaa@3F7F@
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( Δ E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー ( e l e m Δ E int ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaamaaqaeabaWaaSbaaSqaaiaadwgacaWGSbGaamyzaiaa d2gaaeqaaaqabeqaniabggHiLdGccaaMe8UaaeiLdiaadweadaWgaa WcbaGaciyAaiaac6gacaGG0baabeaaaOGaayjkaiaawMcaaaaa@46D6@ で、これは、モデルが単一要素であるためです。数値解析結果の内部エネルギーは初期エネルギーからの相対値で、絶対値から E 0 V 0 値だけシフトされ、0から開始します。

    ex43_numerical_internal_energy_model4
    図 14. 数値的内部エネルギー、モデル4: P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaaeiLdiaadweaaiaawIca caGLPaaaaaa@3F7F@