/MAT/LAW88

Block Format Keyword This law represents the behavior of a hyperelastic material with strain rate effects. This law is generally used to model incompressible rubbers, polymers, foams, and elastomers. It is defined by a family of stress vs strain curves at different strain rates.

Unloading can be represented using an unloading function or by providing hysteresis and shape factor inputs to a damage model based on energy. This law is only compatible with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW88/mat_ID/unit_ID
mat_title
ρ i                
ν K Fcut Fsmooth NL    
fct_IDunL   FscaleunL Hys Shape Tension  
If NL > 0, define NL functions per line
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fct_IDLi   FscaleLi ε ˙ L i        

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
ν Poisson ratio.

For incompressible materials 0.495 is maximum value.

Default = 0.495 (Real)

 
K Bulk modulus.

(Real)

[ Pa ]
Fcut Cutoff frequency for strain rate filtering.

Default = 1030 (Real)

[Hz]
Fsmooth Smooth strain rate option flag.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
NL Number of loading stress strain curve.

(Integer)

 
fctunL Unloading engineering stress vs engineering strain function identifier. 3

(Integer)

 
FscaleunL Unloading function scale factor.

Default = 1.0 (Real)

[ Pa ]
Hys Hysteresis unloading factor. Ignore if, unloading function is used. 3

0.0 ≤ Hys ≤ 1.0

Default = 0.0 (Real)

 
Shape Shape factor. Ignored if, unloading function is used. 3

Default = 1.0 (Real)

 
Tension Unloading rate effects option flag.
During loading in tension or compression, the loading strain rate dependent curves are always used. For unloading, the following options are available:
=0 (Default)
Unloading follows the quasi-static unloading curve.
=1
Unloading follows the loading strain rate dependent curves and the unloading curve is not used.
=-1
Unloading in tension follows the quasi static unloading curve; Unloading in compression follow the loading strain rate dependent curves.
 
fct_IDLi Loading function identifier defining engineering stress vs engineering strain for ith strain rate function.

(Integer)

 
ε ˙ L i Strain rate for ith loading engineering stress vs engineering strain function.

(Real)

[ 1 s ]
FscaleLi Scale factor for ith loading function.

Default = 1.0 (Real)

[ Pa ]

Example (Rubber)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW88/1/1
rubber
#              RHO_I        
                1E-6 		
#                 NU                   K               F_cut  F_smooth       N_L      
                .495               19.93                   0                   1
#fctID_Unl                 Fscale_unload                 HYs               Shape   Tension     
         1                            1.                  0.                  0.         0
#fctID_l                     Fscale_load          Eps_._load
         1                            1.                  0.
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
function 1
#                  X                   Y
           -8.51E-01           -3.55E+01	
           -7.76E-01           -1.10E+01	
           -7.02E-01           -4.83E+00	
           -6.01E-01           -2.06E+00	
           -5.00E-01           -1.05E+00	
           -4.05E-01           -5.98E-01	
           -3.04E-01           -3.33E-01	
            0.00E+00            0.00E+00	
            4.05E-01            1.53E-01	
            8.50E-01            2.37E-01
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. This model utilizes an Ogden material formulation. Material parameters are directly derived from the input stress strain curves from uniaxial tests for different strain rates. The material is assumed to be nearly incompressible with Poisson’s ratio = 0.495.
  2. Strain rate effects can be modeled by including loading engineering stress strain test data at different strain rates fct_IDLi. This can be easier than calculating viscous parameters for traditional hyperelastic material models. When using stress strain curves at different strain rates, the following suggestions are recommended:
    • The stress strain curve should be monotonic increasing and smooth. The derivattive of the stress strain curve should be smooth.
    • Enable strain rate smoothing by defining, Fsmooth =1 with Fcut =500 Hz.
    • In /PROP/SOLID define IHKT =2 and if needed, increase the Numerical Navier Stokes viscosity.
  3. Unloading can be represented using an unloading function, FscaleunL, or by providing hysteresis, Hys, and shape factor, Shape, inputs to a damage model based on energy.
    When using the damage model, the loading curves are used for both loading and unloading and the unloading stress tensor is reduced by:(1)
    σ = ( 1 D ) σ
    with(2)
    D = ( 1 H y s ) ( 1 ( W c u r W max ) S h a p e )
    Where,
    W c u r
    Current energy
    W max
    Maximum energy corresponding to the quasi-static behavior

    If the unloading function, FscaleunL, is entered, unloading is defined based on the unloading flag, Tension.

  4. /VISC/PRONY can be used with this material law to include viscous effects.