/MAT/LAW38 (VISC_TAB)

Block Format Keyword This law describes the visco-elastic foam tabulated material and can only be used with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW38/mat_ID/unit_ID or /MAT/VISC_TAB/mat_ID/unit_ID
mat_title
ρ i                
E0 ν t ν c R ν Iflag Itota
β H RD KR KD θ
Kair fct_IDp FscaleP            
P0 RP Pmax Φ    
fct_IDul   Fscaleunload ε ˙ unload a b
Nfunct   CUToff Iinsta          
Efinal ε final λ Visc Tol
Fscale1 Fscale2 Fscale3 Fscale4 Fscale5
ε ˙ 1 ε ˙ 2 ε ˙ 3 ε ˙ 4 ε ˙ 5
fct_ID1L fct_ID2L fct_ID3L fct_ID4L fct_ID5L          
fct_ID1ul fct_ID2ul fct_ID3ul fct_ID4ul fct_ID5ul          

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
E0 Minimum tension modulus, used for interface and time step computation.

(Real)

[ Pa ]
ν t Maximum Poisson's ratio in tension.

Default = 10-30 (Real)

 
ν c Maximum Poisson's ratio in compression.

(Real)

 
R ν Exponent for Poisson's ratio computation.

(Real)

 
Iflag Analysis formulation type flag. 4
= 0
Viscoelasticity is computed in each principal stress direction
= 1
Behavior is linear in both tension and compression

(Integer)

 
Itota Incremental formulation flag.
= 0 (Default)
Behavior in tension is linear.
=1
Behavior in tension is read from stress curves.

(Integer)

 
β Relaxation rate for unloading.

Default = 10-30 (Real)

 
H Hysteresis coefficient for unloading.

Default = 1.0 (Real)

 
RD Damping factor on strain rate.

Default = 0.5 (Real)

 
KR Recovery model flag for unloading (hysteresis loop).
= 0 (Default)
No stress recovery on unloading (unloading curve=loading curve)
= 1
Stress recovery on unloading is:
σ = σ H min ( 1 , 1 e β ε ( t ) )
= 2
Stress recovery on unloading is:
σ = σ { 1 H [ 1 ( E int E max int ) β ] }

Where, E int and E max int are current internal energy and maximum internal energy, respectively. 6

(Integer)

 
KD Decay model flag, hysteresis type.
= 0 (Default)
Decay is active during loading and unloading.
= 1
Decay is only active during loading.
= 2
Decay is active during unloading.

(Integer)

 
θ Integration coefficient for instantaneous module update.

Default = 0.67 (Real)

 
Kair Air content computation flag. 7
= 0 (Default)
No confined air content
= 1
Confined air content computation active
= 2
Read hydrostatic curve (function identifier defined by fct_IDp). The difference between pure compression and hydrostatic are taken into account.

(Integer)

 
fct_IDp Pressure curve identifier (pressure vs. relative volume).

(Integer)

 
FscaleP Pressure curve scale factor.

(Real)

[ Pa ]
P0 Atmospheric pressure.

(Real)

[ Pa ]
RP Relaxation rate of pressure.

Default = 10-30 (Real)

 
Pmax Maximum air pressure.

Default = 1030 (Real)

[ Pa ]
Φ Porosity (density of foam/density of polymer).

(Real)

 
fct_IDul Unloading function identifier.
> 0
When unloading strain rate is equal to the static one, unloading will use only the function fct_IDul.

(Integer)

 
Fscaleunload Unloading function scale factor.

Default = 1.0 (Real)

[ Pa ]
ε ˙ unload Unloading strain rate (must be greater than ε ˙ 1 ).

(Real)

[ 1 s ]
a Exponent for stress interpolation.

Default = 1.0 (Real)

 
b Exponent for stress interpolation.

Default = 1.0 (Real)

 
Nfunct Number of functions defining rate dependency (five or less).

(Integer)

 
CUToff Tension cutoff stress.

The element is deleted when one element integration point exceeds the tension cutoff stress value.

Default = 1030 (Real)

[ Pa ]
Iinsta Material instability control flag.
= 0 (Default)
No material instability control.
= 1
Material instability control.

(Integer)

 
Efinal Maximum tension modulus.

Default = E0 (Real)

[ Pa ]
ε final Absolute value of strain at final modulus.

Default = 1.0 (Real)

 
λ Modulus interpolation coefficient.

Default = 1.0 (Real)

 
Visc Maximum viscosity. 10

Default = 1030 (Real)

[ Pas ]
Tol Tolerance on principal direction update.

Default = 1.0 (Real)

 
Fscalei Scale factor for curve i.

(Real)

[ Pa ]
ε ˙ i Engineering strain rate for curve i.

(Real)

[ 1 s ]
fct_IDiL Loading function identifier for curve i.

(Integer)

 
fct_IDiul Unloading function identifier for curve i.

(Integer)

 

Example (Foam)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/VISC_TAB/1/1
Foam
#              RHO_I
               2E-10                   
#                E_0                nu_t                nu_c                 R_V     Iflag     Itota
                 200                   0                   0                   0         0         0
#               Beta                   H                 R_D       K_R       K_D                Teta
                   0                   0                   0         0         0                   0
#    K_air  fct_ID_p            Fscale_P
         0         0                   1
#                 P0                  Rp                Pmax                 Phi
                   0                   0                   0                   0
#funID_unl                 Fscale_unload        Eps_._unload                   a                   b
         0                             0                   0                   0                   0
#  N_funct                       CUT_off   I_insta
         1                             0         0
#            E_final           Eps_final              Lambda                Visc                 Tol
                   0                   0                   0                   0                   0
#      Fscale_i
                   1
#      Eps_._i
                   0
#    func_ID_iload
         4
#    func_ID_iunload
         0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/4
function_4
#                  X                   Y
                  -1                -200                                                            
                   1                 200                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. Engineering stress versus engineering strain can be input as functions for different strain rates. The stress and strain is positive in compression and negative in tension. By default (Itota=0), the tension behavior is linear elastic using Young’s modulus, E0. If Itota=1, the engineering stress strain behavior should be input using the functions, fct_IDiL, with the stress strain curve defined both in compression and tension
  2. When stress strain functions are defined at different strain rates, the stresses are computed by interpolation from input functions: σ = f ( ε , ε ˙ )
    for given ε ˙ , read two values of function at ε for the two immediately lower and higher strain rates.

    starter_mat_plas_tab2
    Figure 1. Two Strain Rate Curves (up to five may be input)
    with(1)
    σ = σ 2 + ( σ 1 σ 2 ) [ 1 ( ε ˙ ε ˙ 1 ε ˙ 2 ε ˙ 1 ) a ] b

    The parameters a and b define the shape of the interpolation function within each interval. If a = b = 1, the interpolation is linear.

  3. A "coupled" set of principal nominal stresses is computed with anisotropic Poisson's ratios:

    ν i j = ν c + ( ν t ν c ) ( 1 exp ( R v | ε i j | ) ) in tension ( ε i j 0 )

    ν i j = ν c in compression.

    Where,
    ε i j = ( ε i + ε j ) 2
    ε i j 0
  4. Analysis formulation type Iflag.

    Iflag=0: corresponds to the visco-elastic foam tabulated material (visco-elasticity is computed in each principal stress direction).

    Iflag=1: behavior will be linear in both tension and compression, following Hook's relations.

    For compression, Young's modulus E 0 and Poisson's ratio ν c are used.

    In tension, the instantaneous Young's modulus ratio E t is used.

    The instantaneous Young’s modulus is updated using:(2)
    E t = E f i n a l + ( E 0 E f i n a l ) [ 1 e λ ( V R 1 + ε f i n a l ) ]
    with (3)
    E 0 < E < E f i n a l
    Where,
    E 0
    Minimum tension modulus
    E f i n a l
    Maximum tension modulus
    V R
    Relative volume computed in Radioss
    ε f i n a l
    Absolute value of the strain corresponding to the maximum compression modulus.

    The instantaneous modulus is only used for tension.

  5. For stability, ε ˙ is filtered using:(4)
    ε ˙ filt n = ε ˙ filt n 1 + R D ( ε ˙ n ε ˙ filt n 1 )
  6. Hysteresis is applied in linear tension case.

    If KR=1, Hysteresis is only applied in compression.

    If KR=2, Hysteresis is applied both in compression and in tension.

  7. For air pressure P a i r (when Kair=1)
    If fct_IDp0:(5)
    P air = Fscale p . f ( V V 0 )

    Where, f refers to function number fct_IDp.

    If fct_IDp=0:(6)
    P air = P 0 ( 1 V V 0 ) ( V V 0 Φ )
    Relaxation is applied as:(7)
    P air = min ( P air , P max ) exp ( R p t )

    Where, R p is the relaxation rate of pressure and t is the time.

  8. During unloading, without an unloading curve defined fct_IDiul = fct_IDul=0, σ is computed from the first loading curve, fct_ID1L.

    starter_mat_visc_tab
    Figure 2.

    If the unloading curve is defined, σ is interpolated between the first loading curve fct_ID1L and the defined unloading curve fct_IDul or fct_IDiul. In this case, fct_ID1L must correspond to a quasi-static state.

  9. Unloading functions fct_IDiul (Line 12) are used only if the unloading curve fct_IDul is not defined.
  10. If Visc is input, interpolated stress will be limited by this value to have a larger timestep:(8)
    σ σ 1 + Visc ( ε ˙ ε ˙ 1 )
  11. The behavior is strain rate independent when ε ˙ ε ˙ 1 .
  12. /VISC/PRONY can be used with this material law to include viscous effects.