/MAT/LAW42 (OGDEN)

Block Format Keyword This keyword defines a hyperelastic, viscous, and incompressible material specified using the Ogden, Mooney-Rivlin material models.

This law is generally used to model incompressible rubbers, polymers, foams, and elastomers. This material can be used with shell and solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW42/mat_ID/unit_ID or /MAT/OGDEN/mat_ID/unit_ID
mat_title
ρ i                
ν σ cut   fct_IDblk Fscaleblk M Iform
μ 1 μ 2 μ 3 μ 4 μ 5
Blank Format
α 1 α 2 α 3 α 4 α 5
Blank Format
If M > 0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
G1 G2 G3 G4 G5
. . . M values of G (five per line)
τ 1 τ 2 τ 3 τ 4 τ 5
. . . M values of τ (five per line)

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
ν Poisson's ratio. 3

Default = 0.495 (Real)

 
σ cut Cut-off stress in tension.

Default = 1030 (Real)

[ Pa ]
fct_IDblk Function identifier which scales the bulk coefficient as a function of the relative volume. 6

(Integer)

 
Fscaleblk Bulk function scale factor.

Default = 1.0 (Real)

 
M Number of viscous terms in the Prony series (order of the Maxwell model).

(Integer)

 
Iform Incompressibility for shell elements formulation flag. This flag is not effective for solid elements.
= 0 (Default)
Normal stretch of shell elements is calculated to provide element incompressibility.
= 1
Same formulation as for solid elements is used.
 
μ 1 First parameter of the shear hyperelastic modulus.

(Real)

[ Pa ]
μ 2 Second parameter of the shear hyperelastic modulus.

(Real)

[ Pa ]
μ 3 Third parameter of the shear hyperelastic modulus.

(Real)

[ Pa ]
μ 4 Fourth parameter of the shear hyperelastic modulus.

(Real)

[ Pa ]
μ 5 Fifth parameter of the shear hyperelastic modulus.

(Real)

[ Pa ]
α 1 First material exponent.

(Real)

 
α 2 Second material exponent.

(Real)

 
α 3 Third material exponent.

(Real)

 
α 4 Fourth material exponent.

(Real)

 
α 5 Fifth material exponent.

(Real)

 
Gi ith multiplier of the Prony viscous term. 7

(Real)

[ Pa ]
τ i ith time relaxation of the Prony viscous term.

(Real)

[ s ]

Example (Rubber)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/OGDEN/1/1
rubber
#              RHO_I
                1E-6
#                 Nu           sigma_cut           funIDbulk         Fscale_bulk         M     Iform
                .495                   0                   0                   0         0         0
#               Mu_1                Mu_2                Mu_3                Mu_4                Mu_5
                2e-3               -1e-3                   0                   0                   0
# blank card

#            alpha_1             alpha_2             alpha_3             alpha_4             alpha_5
                   2                  -2                   0                   0                   0
# blank card

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. This material model defines a hyperelastic, viscous, and incompressible material specified using the Ogden, Neo-Hookean, or Mooney-Rivlin material models. This law is generally used to model incompressible rubbers, polymers, foams, and elastomers. This material can be used with shell and solid elements.
    LAW42 uses the following strain energy density representation of the Ogden material model.(1)
    W ( λ 1 , λ 2 , λ 3 ) = p = 1 5 μ p α p ( λ ¯ 1 α p + λ ¯ 2 α p + λ ¯ 3 α p 3 ) + K 2 ( J 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaae WaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaaiilaiabeU7aSnaaBaaaleaacaaIZa aabeaaaOGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaacqaH 8oqBdaWgaaWcbaGaamiCaaqabaaakeaacqaHXoqydaWgaaWcbaGaam iCaaqabaaaaOWaaeWaaeaadaqdaaqaaiabeU7aSbaadaWgaaWcbaGa aGymaaqabaGcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabe aaaaGccqGHRaWkdaqdaaqaaiabeU7aSbaadaWgaaWcbaGaaGOmaaqa baGcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabeaaaaGccq GHRaWkdaqdaaqaaiabeU7aSbaadaWgaaWcbaGaaG4maaqabaGcdaah aaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabeaaaaGccqGHsislca aIZaaacaGLOaGaayzkaaaaleaacaWGWbGaeyypa0JaaGymaaqaaiaa iwdaa0GaeyyeIuoakiabgUcaRmaalaaabaGaam4saaqaaiaaikdaaa WaaeWaaeaacaWGkbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaaaaa@6C02@
    Where,
    W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbaaaa@373A@
    Strain energy density
    λ i
    ith principal engineering stretch
    J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbaaaa@372D@
    Relative volume defined as: J = λ 1 λ 2 λ 3 = ρ 0 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbGaey ypa0Jaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaeyyXICTaeq4UdW2aaSbaaSqaaiaaio daaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baaakeaacqaHbpGCaaaaaa@4A3F@
    λ ¯ i = J 1 3 λ i
    Deviatoric stretch
    α p and μ p
    Material constants coefficient pairs.
    Up to 5 material constant pairs can be defined.
    The initial shear modulus μ and bulk modulus ( K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@372E@ ) are given by:(2)
    μ = p = 1 5 μ p α p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaSaaaeaadaaeWbqaaiabeY7aTnaaBaaaleaacaWGWbaabeaa kiabgwSixlabeg7aHnaaBaaaleaacaWGWbaabeaaaeaacaWGWbGaey ypa0JaaGymaaqaaiaaiwdaa0GaeyyeIuoaaOqaaiaaikdaaaaaaa@4720@
    and(3)
    K = μ 2 ( 1 + ν ) 3 ( 1 2 ν )

    Where, ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AF@ is the Poisson's ratio and is only used for computing the bulk modulus.

  2. Parameters α p and μ p must be chosen so that initial shear modulus is μ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey Opa4JaaGimaaaa@396F@ .

    For material stability, it is required that each material constant pair μ p α p > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaamiCaaqabaGccqGHflY1cqaHXoqydaWgaaWcbaGaamiC aaqabaGccqGH+aGpcaaIWaaaaa@4015@ .

  3. Poisson's ratio ν is used only for computing the bulk modulus, Equation 3.

    For pure incompressible materials, ν = 0.5 . This value leads to a finite bulk modulus ( K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@372E@ ). Therefore, the recommended maximum Poisson's ratio for incompressible materials is ν = 0.495 .

    Higher values of the Poisson's ratio may lead to a small time step value or divergence in case of implicit and explicit simulations.

  4. A particular case of the Ogden material model is the incompressible Mooney-Rivlin model, which can be represented using the following equation for the strain energy density function:(4)
    W = C 10 ( I 1 3 ) + C 01 ( I 2 3 )

    Where, I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaaaaa@37AC@ and I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaaaaa@37AC@ are the first and second invariants of the right Cauchy-Green Tensor.

    This representation can be derived from the Ogden strain energy density function when:(5)
    μ 1 = 2 C 10
    (6)
    μ 2 = 2 C 01
    (7)
    α 1 = 2
    (8)
    α 2 = 2
  5. A simple case of the Ogden material model is the Neo-Hookean model represented using the following equation for the strain energy density function:(9)
    W = C 10 ( I 1 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2 da9iaadoeadaWgaaWcbaGaaGymaiaaicdaaeqaaOWaaeWaaeaacaWG jbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawM caaaaa@3F3E@
    Where,
    I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaaaaa@37AC@
    First invariants of the right Cauchy-Green Tensor
    C 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaGaaGimaaqabaaaaa@385F@
    Material constant
    This representation can be derived from the LAW42 Ogden strain energy density function when:(10)
    μ 1 = 2 C 10
    (11)
    α 1 = 2
    and(12)
    μ 2 = α 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaaikda aeqaaOGaeyypa0JaaGimaaaa@3DF6@
  6. In cases when the bulk modulus of a material is not large enough to prevent compression, LAW42 allows the input of a function (fct_IDblk) which scale the bulk modulus as a function of the relative volume so that the bulk modulus can be increased to maintain incompressibility.
  7. Viscous (rate) effects are modeled in LAW42 using a Maxwell model, which can be described in a simplified manner as a system of n springs with stiffness' G i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaadMgaaeqaaaaa@3844@ and dampers η i :

    law82_maxwell_model
    Figure 1. Maxwell Model
    The Maxwell model is represented using Prony series inputs ( G i , τ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGPbaabeaakiaacYcacqaHepaDdaWgaaWcbaGaamyAaaqa baaaaa@3B76@ ). The hyperelastic initial shear modulus μ is the same as the long-term shear modulus G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiabg6HiLcqabaaaaa@38C7@ in the Maxwell model, and τ i is the relaxation time:(13)
    τ i = η i G i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHepaDda WgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcaaqaaiabeE7aOnaaBaaa leaacaWGPbaabeaaaOqaaiaadEeadaWgaaWcbaGaamyAaaqabaaaaa aa@3F13@

    The G i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaadMgaaeqaaaaa@3844@ and τ i values must be positive.

  8. /VISC/PRONY can be used with this material law to include viscous effects.