/PROP/TYPE22 (TSH_COMP)
Block Format Keyword This property set is used to define the composite thick shell property set.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/PROP/TYPE22/prop_ID/unit_ID or /PROP/TSH_COMP/prop_ID/unit_ID  
prop_title  
I_{solid}  I_{smstr}  I_{cstr}  I_{npts}  I_{int}  d_{n}  
q_{a}  q_{b}  
V_{X}  V_{Y}  V_{Z}  skew_ID  I_{orth}  I_{pos}  
A_{shear} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

$\varphi {}_{i}$  t_{i}/t  Z_{i}  mat_ID_{i} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

$\text{\Delta}{t}_{\mathrm{min}}$ 
Definitions
Field  Contents  SI Unit Example 

prop_ID  Property
identifier. (Integer, maximum 10 digits) 

unit_ID  Unit Identifier. (Integer, maximum 10 digits) 

prop_title  Property
title. (Character, maximum 100 characters) 

I_{solid}  Solid elements formulation flag.
(Integer) 

I_{smstr}  Small strain formulation
flag. 4
(Integer) 

I_{cstr}  Constant stress
formulation flag. Only valid for I_{solid} =
14.
(Integer) 

I_{npts}  Number of integration
points. 2
(Integer) Where,


I_{int}  Number of layers when 9
< number of layers ≤ 200. Only valid for I_{solid} =
14. 4 (Integer) 

d_{n}  Numerical damping for
stabilization. Only valid for I_{solid} =
15. Default = 0.1 (Real) 

q_{a}  Quadratic bulk
viscosity. Default = 1.10 (Real) Default = 0.0 for /MAT/LAW70 

q_{b}  Linear bulk
viscosity. Default = 0.05 (Real) Default = 0.0 for /MAT/LAW70 

A_{shear}  Shear factor. Default = 1.0 (Real) 

V_{X}  X component for reference
vector. Default = 1.0 (Real) 

V_{Y}  Y component for reference
vector. Default = 0.0 (Real) 

V_{Z}  Z component for reference
vector. Default = 0.0 (Real) 

skew_ID  Skew identifier. If the local skew has been defined, its Xaxis replaces the reference vector (V_{X}, V_{Y}, and V_{Z} will be ignored). (Integer) 

I_{orth}  Orthotropic system
formulation flag for reference vector.
(Integer) 

I_{pos}  Layer positioning flag for
reference vector.
(Integer) 

$\text{\Delta}{t}_{\mathrm{min}}$  Minimum time
step. Default = 10^{6} (Real) 
$\left[\text{s}\right]$ 
$\varphi {}_{i}$  Angle for layer
I. (Real) 
$\left[\mathrm{deg}\right]$ 
t_{i}/t  Relative thickness of
layer i.
(Real) 

Z_{i}  Z position (normalized by
the thickness) of layer i (0.5 ≤
Z_{i} ≤
0.5). Default = 0.0 (Real) 

mat_ID_{i}  Material identifier for
layer I. (Integer) 
Example
#RADIOSS STARTER
#12345678910
# 1. LOCAL_UNIT_SYSTEM:
#12345678910
/UNIT/2
unit for prop
# MUNIT LUNIT TUNIT
kg mm ms
#12345678910
# 2. GEOMETRICAL SETS:
#12345678910
/PROP/TYPE22/1/2
TSH_COMP example
# Isolid Ismstr Icstr Inpts Iint dn
14 0 010 333 0 0
# q_a q_b
0 0
# Vx Vy Vz skew_ID Iorth Ipos
1 1 1 0 0 0
# Ashear
0
# PHI_I T_I/T ZI MAT_I
45 0.3 0 1
90 0.4 0 2
45 0.3 0 1
# dt_min
0
#12345678910
#enddata
#12345678910
Comments
 I_{solid}  Solid formulation
 I_{solid} =14 formulation (H8 element) must use constant stress formulation (I_{cstr} > 0), which refers to local isoparametric orthogonolized system rst. Definition of the system is described in the comments of /PROP/TYPE6 (SOL_ORTH).
 When using I_{solid}=15 with pentahedron elements, /PENTA6 elements are recommended but degenerated /BRICK elements can also be used.
 Number of layers.
 For I_{solid} =
14 formulation (HA8 element), number of layers (
< 9 ) is defined as:
 If I_{cstr} = 001, the number of layers in t direction is equal to k value from I_{npts} field.
 If I_{cstr} = 010, the number of layers in s direction is equal to j value from I_{npts} field (I_{cstr} = 010; I_{npts} = 282; for a number of 8 layers in s direction).
 If I_{cstr} = 100, the number of layers in r direction is equal to i value from I_{npts} field.
 For I_{solid} formulation
(HA8 element) when the number of layers > 9 is defined as:
 Use I_{int} for I_{solid}
formulation (HA8 element) when the number of layers > 9.
In this case, the thickness direction integration points defined by I_{npts} should be zero.
Example, I_{cstr} = 010; I_{npts} = 202; I_{int} = 100 for a number of 100 layers in "s" direction.
 Use I_{int} for I_{solid}
formulation (HA8 element) when the number of layers > 9.
 For I_{solid} =
14 formulation (HA8 element), number of layers (
< 9 ) is defined as:
 When using the automatic setting option I_{smstr} = I_{cpre} = I_{frame}=1, the values for these options are defined using the best options based on the element formulation, element type, and material. Alternatively, defining I_{smstr} = I_{cpre} = I_{frame}=2 will overwrite the values for these options defined in this property with the best value based on element type and material law. To see the values defined by Radioss, review the “PART ELEMENT/MATERIAL PARAMETER REVIEW” section of the Starter output file.
 I_{smstr}  Small strain
formulation flag.
 Starting with version 2017, Lagrangian elements whose volume becomes
negative during a simulation will automatically switch strain
formulations to allow the simulation to continue. When this occurs, a
WARNING message will be printed in the Engine output file. The following
options are supported.
Element Type Element Formulation Strain Formulation Negative Volume Handling Method /BRICK I_{solid} =14, 15 Full geometric nonlinearities I_{smstr} = 2, 4
Switch to small strain using element shape from cycle before negative volume.
 Starting with version 2017, Lagrangian elements whose volume becomes
negative during a simulation will automatically switch strain
formulations to allow the simulation to continue. When this occurs, a
WARNING message will be printed in the Engine output file. The following
options are supported.
 Othotropy in local
coordinate system.
 The thick shell orthotropy is planar and the third orthotropy direction is coincident with the normal to the shell plane.
 Global vector $V$ or skew_ID is used to define the othotropy direction. The global vector $V$ or the $X$ axis of specified skew (in this case, global vector is ignored) is projected to the mean plane of soslid element.
 For I_{solid}=14, the mean plane of the element depends on I_{cstr}.
 rs for I_{cstr}=001
 rt for I_{cstr}=010
 st for I_{cstr}=001.
 $\varphi $ is the angle (in degrees) between the first direction of orthotropy and projection of reference vector on the shell mean plane for layer i.
 Material used for
layer
 Material law type used in Mat_ID_{i} can be different for each layer.
 For I_{solid}= 15, the material law number defined in /PART will be used to compute the contact interface stiffness and the hourglass stresses.