Ityp = 2

Block Format Keyword This law enables to model a material inlet/outlet by directly imposing its state. Input card is similar to /MAT/LAW11 (BOUND), but introduces two new lines to define turbulence parameters.


law11_ityp2
Figure 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/B-K-EPS/mat_ID/unit_ID
mat_title
ρ i ρ 0            
Ityp   Psh FscaleT        
Ityp =2: General Inlet/Outlet
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Blank Format
fct_ID ρ                  
fct_IDp   P0              
fct_IDE   E0              
ρ 0 κ 0 ρ 0 ε 0 fct_IDk fct_IDe        
C μ σ κ σ ε P r / P r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@    
fct_IDT fct_IDQ                

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density. 3

(Real)

[ kg m 3 ]
ρ 0 Reference density used in E.O.S (equation of state).

Default ρ 0 = ρ i (Real)

[ kg m 3 ]
Ityp Boundary condition type. 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

 
Psh Pressure shift. 3

(Real)

[ Pa ]
FscaleT Time scale factor. 3

(Real)

 
fct_ID ρ Function f ρ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabeg8aYbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BCA@ identifier for boundary density. 3
= 0
ρ ( t ) = ρ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp cqaHbpGCpaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@3E7B@
> 0
ρ ( t ) = ρ i f ρ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp cqaHbpGCpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyyXICTaae Oza8aadaWgaaWcbaWdbiabeg8aYbWdaeqaaOWdbmaabmaabaGaamiD aaGaayjkaiaawMcaaaaa@467E@

(Integer)

 
fct_IDp Function f P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3ADF@ identifier for boundary pressure.. 3
= 0
P ( t ) = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3C71@
> 0
P ( t ) = P 0 f P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da 9iaadcfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyXICTaae Oza8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaaa@441B@

(Integer)

 
P0 Initial pressure. 3

(Real)

[ Pa ]
fct_IDE Function f E ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadweaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AD4@ identifier for boundary energy. 3
= 0
E ( t ) = E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyra8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3C5B@
> 0
E ( t ) = E 0 f E ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyra8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caqGMb WdamaaBaaaleaapeGaamyraaWdaeqaaOWdbmaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaaaaa@4387@

(Integer)

 
E0 Initial energy. 3 6

(Real)

[ Pa ]
ρ 0 κ 0 Initial turbulent energy.

(Real)

[ J ]
ρ 0 ε 0 Initial turbulent dissipation.

(Real)

[ J ]
fct_IDk Function f κ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabeQ7aRbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BBC@ identifier for turbulence modeling.
= 0
κ = κ a d j a c e n t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyypa0JaeqOUdS2damaaBaaaleaapeGaamyyaiaadsga caWGQbGaamyyaiaadogacaWGLbGaamOBaiaadshaa8aabeaaaaa@4232@
> 0
κ = κ 0 f κ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyypa0JaeqOUdS2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixlaabAgapaWaaSbaaSqaa8qacqaH6oWAa8aabeaak8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@439E@

(Integer)

 
fct_ID ε (Optional) Function f ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabew7aLbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BB1@ identifier for turbulence modeling.
= 0
ε = ε a d j a c e n t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaeqyTdu2damaaBaaaleaapeGaamyyaiaadsga caWGQbGaamyyaiaadogacaWGLbGaamOBaiaadshaa8aabeaaaaa@421C@
> 0
ε = ε 0 f ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaeqyTdu2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixlaabAgapaWaaSbaaSqaa8qacqaH1oqza8aabeaak8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@437D@

(Integer)

 
C μ Turbulent viscosity coefficient.

Default = 0.09 (Real)

 
σ κ Diffusion coefficient for κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSgaaa@37BE@ parameter.

Default = 1.00 (Real)

 
σ ε Diffusion coefficient for ε ˙ parameter

Default = 1.30 (Real)

 
P r / P r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@ Ratio between Laminar Prandtl number (Default 0.7) and turbulent Prandtl number (Default 0.9).

(Real)

 
fct_IDT Function f T ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AE3@ identifier for inlet temperature.
= 0
T = Tadjacent
= n
T = T 0 f T ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyyXICTaaeOza8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@4113@

(Integer)

 
fct_IDQ Function f Q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadgfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AE0@ identifier for inlet heat flux.
= 0
No imposed flux
= n
Q = f Q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaabAgapaWaaSbaaSqaa8qacaWGrbaapaqabaGc peWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3CBC@

(Integer)

 

Example (Gas)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/B-K-EPS/3
GAS INLET (unit: kg_m_s)
#              RHO_I
               .3828
#     ITYP                           Psh         Fscale_T
         2
#blank line
#  fct_RHO
         1
#    fct_P                           P_0
         0
#    fct_E                           E_0
         1                        253300
#             Rho0k0            Rho0Eps0     fct_k   fct_eps
                  20                   0         1         0
#                Cmu             Sigma-k       Sigma-epsilon              Pr/Prt
                   0                   0                   0                   0
# fct_T        fct_Q
/ALE/MAT/3
#     Modif. factor.
                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
CST
#                  X                   Y
                   0                   1
              1.0E20                   1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. Provided state is directly imposed to inlet boundary elements. This leads to the following inlet state:
    (1)
    ρ i n = ρ i f ρ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyAaiaad6gaa8aabeaak8qacqGH 9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaeOza8 aadaWgaaWcbaWdbiabeg8aYbWdaeqaaOWdbmaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaaaaa@4407@
    (2)
    P in = P 0 f P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGaeyyp a0Jaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaqGMbWdam aaBaaaleaapeGaamiuaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baa caGLOaGaayzkaaaaaa@4112@
    (3)
    E in = ( ρe ) in = E 0 f E ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiabeg8aYjaadwgaaiaawIcacaGLPaaapaWaaS baaSqaa8qacaWGPbGaamOBaaWdaeqaaOWdbiabg2da9iaadweapaWa aSbaaSqaa8qacaaIWaaapaqabaGcpeGaaeOza8aadaWgaaWcbaWdbi aadweaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca aaaa@489E@

    With this formulation, you may impose velocity on boundary nodes to be consistent with physical inlet velocity (/IMPVEL). /MAT/LAW11 - Ityp=0 and 1, are based on material state from stagnation point, where you do not need to imposed an inlet velocity.

  2. The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using P s h = P ( t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGtbGaamisaaqabaGccqGH9aqpcaWGqbWaaeWaaeaacaWG 0bGaeyypa0JaaGimaaGaayjkaiaawMcaaaaa@3EC3@ , the output pressure will be Δ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaeiLdiaadcfaaaa@3B95@ , with an initial value of 0.0.
  3. If no function is defined, then related quantity ( P s t a g n a t i o n , ρ s t a g n a t i o n , T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWG UbGaamyyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaak8qacaGGSa GaeqyWdi3damaaBaaaleaapeGaam4CaiaadshacaWGHbGaam4zaiaa d6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOWdbiaacY cacaWGubaaaa@4E96@ , or Q) remains constant and set to its initial value. However, all input quantities ( P s t a g n a t i o n , ρ s t a g n a t i o n , T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWG UbGaamyyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaak8qacaGGSa GaeqyWdi3damaaBaaaleaapeGaam4CaiaadshacaWGHbGaam4zaiaa d6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOWdbiaacY cacaWGubaaaa@4E96@ , and Q) can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f ( F s c a l e t , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciOzamaabmaapaqaa8qacaWGgbGaam4CaiaadogacaWGHbGaamiB aiaadwgapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaaiilaiaads haaiaawIcacaGLPaaaaaa@4122@ instead of f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3999@ .
  4. With thermal modeling, all thermal data ( T 0 , ρ 0 C p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaeqyW di3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadoeapaWaaSbaaS qaa8qacaWGWbaapaqabaaaaa@3DC8@ , …) can be defined with /HEAT.
  5. It is not possible to use this boundary material law with multi-material ALE /MAT/LAW37 (BIPHAS)) and /MAT/LAW51 (MULTIMAT).
  6. Specific volume energy E is defined as E = E int V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamOvaaaaaaa@3C8D@ ,
    Where
    E i n t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadMgacaWGUbGaamiDaaWdaeqaaaaa @3A0A@
    Internal energy. It can be output using /TH/BRIC.

    Specific mass energy e is defined as e = E i n t / m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyzaiabg2da9iaadweapaWaaSbaaSqaa8qacaWGPbGaamOBaiaa dshaa8aabeaak8qacaGGVaGaamyBaaaa@3DB9@ . This leads to ρ e = E . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.