/MAT/K-EPS

Block Format Keyword Describes the k ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk HiTiabew7aLbaa@397B@ turbulence viscous material for fluid.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/K-EPS/mat_ID/unit_ID
mat_title
ρ i ρ 0            
ν Pmin            
ρ 0 k 0 SSL            
c μ σ k σ ε P r / P rt    
C 1ε C 2 ε C 3ε        
κ E α χ t    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
ρ 0 Reference density used in E.O.S (equation of state).

Default = ρ i (Real)

[ kg m 3 ]
ν Kinematic viscosity

(Real)

[ m 2 s ]
Pmin Pressure cut-off.

(Real)

[ Pa ]
ρ 0 k 0 Initial turbulent energy (first part).

(Real)

[ J ]
SSL Subgrid scale length (first part).

Default = 1e+10 (Real)

[ m ]
c μ Turbulent viscosity coefficient (second part).

Default = 0.09 (Real)

 
σ k k diffusion coefficient (second part).

Default = 1.00 (Real)

 
σ ε Prandtl number of dissipation (second part).

Default = 1.30 (Real)

 
P r / P rt Laminar/turbulent Prandtl ratio (second part).

Default = 0.7/0.9 (Real)

 
C 1 ε ε equation coefficient 1 (third part).

Default = 1.440 (Real)

 
C 2ε ε equation coefficient 2 (third part).

Default = 1.920 (Real)

 
C 3ε ε equation coefficient 3 (third part).

Default = -0.375 (Real)

 
κ Kappa wall constant (fourth part).

Default = 0.4187 (Real)

 
E E wall constant (fourth part).

Default = 9.7930 (Real)

 
α κ , ε , τ excentration (fourth part).

Default = 0.5000 (Real)

 
χ t Source term factor (fourth part).

(Real)

 

Example (Gas)

#RADIOSS STARTER
/UNIT/1
unit for mat
                  kg                   m                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/K-EPS/4/1
GAS
#              RHO_I               RHO_0
               .3828                   0
#                KNU                Pmin
             1.05E-4                   0
#            RHO0_K0                 SSL
                  20                   0    
#               C_MU               SIG_k             SIG_EPS         P_R_ON_P_RT
                   0                   0                   0
#             C_1eps              C_2eps              C_3eps
                   0                   0                   0              
#              KAPPA                   E              ALPHA                GSI_T
                   0                   0                   0                   0
/EOS/POLYNOMIAL/4/1
GAS
#                 C0                  C1                  C2                  C3
                   0                   0                   0                   0
#                 C4                  C5                  E0                Pmin               RHO_0
                 0.4                 0.4              253300                   0                1.22
/ALE/MAT/4
#     Modif. factor.
                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. (1)
    S ij = 2 ρ ν eq e ˙ ij
    Where,
    S i j
    Deviatoric stress tensor
    e i j
    Deviatoric strain tensor
    • If the element is connected to a boundary condition, a turbulent boundary layer model is used:
      (2)
      v eq = max ( v , v κ ( y + ln ( E y + ) ) )
      (3)
      y + = c μ k 2 ε α κ ν
      (4)
      χ = ( 1 χ t ) + χ t α ln ( E y + )

      Where, κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSgaaa@37A8@ is the turbulent kinetic energy.

    • If the ratio between the laminar and the turbulent Prantl numbers is higher than P r / P r t , then:
      • For laminar flow:(5)
        ν eq = ν
      • For turbulent flow:(6)
        ν eq = ν + c μ k 2 ε
      Where, ε ˙ is the turbulent dissipation and it is calculated using the following equations:(7)
      d d t V ρ ε d V = S ρ ε ( v w ) n d S + S μ t σ ε g r a d ( ε ) n d S + V S ε d V

      With,

      μ t = C μ κ 2 ε (turbulent viscosity)(8)
      G = v i x j [ μ t ( v i x j + v j x i 2 3 ρ κ δ i j ) 2 3 ρ κ δ i j ]
      (9)
      S ε = ε κ ( C 1 ε G C 2 ε ρ ε + C 3 ε ρ κ v j x j )
      Where,
      v
      Material velocity
      w
      Grid velocity
  2. Equation of state for hydrodynamic pressure has to be prescribed via the /EOS card.

    If P = c s t = 0 , then C 1 μ + α ν T = 0 , so μ = α ν T C 1

    Where,
    μ
    Dilatation coefficient
    μ < 0
    Dilatation
    In this case the parameters C2 and C3 will not be taken into account.
  3. If using LAW6 coupled with /MAT/LAW37 (BIPHAS) for liquid phase (without gas phase), the compatibility of the liquid EOS is:

    Δ P 1 = C 1 μ for /MAT/LAW37 (BIPHAS)

    p = C 0 + C 1 μ + C 2 μ 2 + C 3 μ 3 + ( C 4 + C 5 μ ) E for LAW6, via a polynomial EOS defined in the example above,

    then, p = C 1 μ

  4. If using LAW6 coupled with /MAT/LAW37 (BIPHAS) for gas phase (without liquid phase), the compatibility of the gas EOS is:

    P V γ = c o n s t . for /MAT/LAW37 (BIPHAS)

    p = ( γ 1 ) ( μ + 1 ) E , for LAW6, via the /EOS/IDEAL-GAS equation of state.

    Where, E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbaaaa@3832@ is the energy per unit volume.

  5. All thermal data ( ρ 0 C p , T 0 , A , a n d B ) can be defined with keyword /HEAT/MAT.