/MAT/LAW113 (SPR_BEAM)

Block Format Keyword This beam type spring material works as a beam element with six independent modes of deformation. This spring accounts for nonlinear stiffness, damping and different unloading.

Deformation, force, and energy-based failure criteria are available. This material must be assigned to a /PART that references the spring property /PROP/TYPE23 (SPR_MAT).

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW113/mat_ID/unit_ID or /MAT/SPR_BEAM/mat_ID/unit_ID
mat_title
ρρ                
Ifail Ileng Ifail2              
Loading index=1: Tension/Compression
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K1 C1 A1 B1 D1
fct_ID11 H1 fct_ID21 fct_ID31 fct_ID41   δ1minδ1min δ1maxδ1max
F1 E1 Ascale1 Hscale1    
Loading index=2: Shear XY
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K2 C2 A2 B2 D2
fct_ID12 H2 fct_ID22 fct_ID32 fct_ID42   δ2minδ2min δ2maxδ2max
F2 E2 Ascale2 Hscale2    
Loading index=3: Shear XZ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K3 C3 A3 B3 D3
fct_ID13 H3 fct_ID23 fct_ID33 fct_ID43   δ3minδ3min δ3maxδ3max
F3 E3 Ascale3 Hscale3    
Loading index=4: Torsion
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K4 C4 A4 B4 D4
fct_ID14 H4 fct_ID24 fct_ID34 fct_ID44   θ4minθ4min θ4maxθ4max
F4 E4 Ascale4 Hscale4    
Loading index=5: Bending Y
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K5 C5 A5 B5 D5
fct_ID15 H5 fct_ID25 fct_ID35 fct_ID45   θ5minθ5min θ5maxθ5max
F5 E5 Ascale5 Hscale5    
Loading index=6: Bending Z
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K6 C6 A6 B6 D6
fct_ID16 H6 fct_ID26 fct_ID36 fct_ID46   θ6minθ6min θ6maxθ6max
F6 E6 Ascale6 Hscale6    
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
v0v0 ω0ω0 Fcut Fsmooth      
c1 n1 α1α1 β1β1    
c2 n2 α2α2 β2β2    
c3 n3 α3α3 β3β3    
c4 n4 α4α4 β4β4    
c5 n5 α5α5 β5β5    
c6 n6 α6α6 β6β6    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρρ Density.

(Real)

[kgm3][kgm3]
Ifail Failure criteria.
= 0
Uni-directional criteria.
= 1
Multi-directional criteria.

(Integer)

 
Ileng Input per unit length flag. 4 5
= 0
Spring stiffness properties are input as explained in the definition table.
= 1
Spring properties are a function of engineering strain.

(Integer)

 
Ifail2 Failure model flag.
= 0 (Default)
Displacement and rotation criteria.
= 1
Displacement and rotation criteria with velocity rate effect.
= 2
Force and moment criteria.
= 3
Internal energy criteria.

(Integer)

 
Ki If fct_ID1i = 0: Linear loading and unloading stiffness.

If fct_ID1i0: Only used as unloading stiffness for elasto-plastic springs.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Real)

[Nm][Nm] if ii = 1, 2, 3

[Nmrad][Nmrad] if ii = 4, 5, 6

Ci Damping.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Real)

[Nsm][Nsm] if ii = 1, 2, 3

[Nmsrad][Nmsrad] if ii = 4, 5, 6

Ai Nonlinear stiffness function scale factor.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 1.0 (Real)

[N][N] if ii = 1, 2, 3

[Nm][Nm] if ii = 4, 5, 6

Bi Scale factor for logarithmic rate effects.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 0.0 (Real)

[N][N] if ii = 1, 2, 3

[Nm][Nm] if ii = 4, 5, 6

Di Scale factor for logarithmic rate effects.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 1.0 (Real)

[ms][ms] if ii = 1, 2, 3

[rads][rads] if ii = 4, 5, 6

fct_ID1i Function identifier defining nonlinear stiffness f()f() .
= 0
Linear spring with stiffness K.

If Hi =4: Function defines upper yield curve.

If Hi =8: Function is mandatory and defines the force or moment vs spring length.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Integer)

 
Hi Spring Hardening flag for nonlinear spring.
= 0
Elastic spring.
= 1
Nonlinear elasto-plastic spring with isotropic hardening.
= 2
Nonlinear elasto-plastic spring with uncoupled hardening.
= 4
Nonlinear elastic plastic spring with kinematic hardening.
= 5
Nonlinear elasto-plastic spring with nonlinear unloading.
= 6
Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading.
= 7
Nonlinear elastic plastic spring with elastic hysteresis.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Integer)

 
fct_ID2i Function identifier defining force or moment as a function of spring velocity, g()g() .

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Integer)

 
fct_ID3i Function identifier.

If Hi =4: Defines lower yield curve.

If Hi =5: Defines residual displacement or rotation vs maximum displacement or rotation.

If Hi =6: Defines nonlinear unloading curve.

If Hi =7: Defines nonlinear unloading curve.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Integer)

 
fct_ID4i Function identifier for nonlinear damping, h()h() .

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Integer)

 
δiminδimin Negative translation failure limit.

ii = 1, 2, 3 are translation DOF.

Default = -1030 (Real)

 
If Ifail2 = 0 or 1: Failure displacement. [m][m]
If Ifail2 = 2: Failure force. [N][N]
If Ifail2 = 3: Failure internal energy. [J][J]
θiminθimin Negative rotational failure limit.

ii = 4, 5, 6 are rotation DOF.

Default = -1030 (Real)

 
If Ifail2 = 0 or 1: Failure rotation. [rad][rad]
If Ifail2 = 2: Failure moment. [Nm][Nm]
If Ifail2 = 3: Failure internal energy. [J][J]
δimaxδimax Positive translation failure limit.

ii = 1, 2, 3 are translation DOF.

Default = -1030 (Real)

 
If Ifail2 = 0 or 1: Failure displacement. [m][m]
If Ifail2 = 2: Failure force. [N][N]
If Ifail2 = 3: Failure internal energy. [J][J]
θimaxθimax Positive rotational failure limit.

ii = 4, 5, 6 are rotation DOF.

Default = -1030 (Real)

 
If Ifail2 = 0 or 1: Failure rotation. [rad][rad]
If Ifail2 = 2: Failure moment. [Nm][Nm]
If Ifail2 = 3: Failure internal energy. [J][J]
Fi Abscissa scale factor for the damping functions for the gg and hh .

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 1.0 (Real)

[ms][ms] if ii = 1, 2, 3

[rads][rads] if ii = 4, 5, 6

Ei Ordinate scale factor for the damping function gg .

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

(Real)

[N][N] if ii = 1, 2, 3

[Nm][Nm] if ii = 4, 5, 6

Ascalei Abscissa scale factor for the stiffness function ff .

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 1.0 (Real)

[m][m] if ii = 1, 2, 3

[rad][rad] if ii = 4, 5, 6

Hscalei Ordinate scale factor for the damping function hh .

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 1.0 (Real)

[N][N] if ii = 1, 2, 3

[Nm][Nm] if ii = 4, 5, 6

v0v0 Reference translational velocity.

Default = 1.0 (Real)

[ms][ms]
ω0ω0 Reference rotational velocity.

Default = 1.0 (Real)

[rads][rads]
Fcut Strain rate cutting frequency.

Default = 1030 (Real)

[Hz][Hz]
Fsmooth Smooth strain rate flag.
= 0 (Default)
Strain rate smoothing is inactive.
=1
Strain rate smoothing is active.

(Integer)

 
ci Relative velocity coefficient.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 0.0 (Real)

 
If Ifail2 = 0 or 1: Failure displacement or rotation. [m][m] if ii = 1, 2, 3

[rad][rad] if ii = 4, 5, 6

If Ifail2 = 2: Failure force or moment. [N][N] if ii = 1, 2, 3

[Nm][Nm] if ii = 4, 5, 6

If Ifail2 = 3: Coefficient for failure internal energy. [J][J]
ni Relative velocity exponent.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 0.0 (Real)

 
αiαi Failure scale factor.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 1.0 (Real)

 
βiβi Exponent.

ii = 1, 2, 3 are translation DOF.

ii = 4, 5, 6 are rotation DOF.

Default = 2.0 (Real)

 

Example

In this example beside mass and inertia just simple set stiffness for 6 DOF for this beam type of spring material.
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  1. LOCAL_UNIT_SYSTEM:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/2
units for material and property
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/PROP/SPR_MAT/26/2
SPOTWELD_NO_RUPTURE
#    Imass                        Volume             Inertia   skew_ID   sens_ID    Isflag     
         2                             1             6.55E-6         0         0         0     
/MAT/LAW113/26/2
SPOTWELD_NO_RUPTURE
                2E-6
#    Ifail     Ileng    Ifail2
                                   
#                 K1                  C1                  A1                  B1                  D1
              100000                   0                   0                   0                   0
# fct_ID11        H1  fct_ID21  fct_ID31  fct_ID41                    delta_min1          delta_max1
         1         1         0         0         0                             0               .5E-1
#                 F1                  E1             Ascale1             Hscale1
                   0                   0                   0                   0
#                 K2                  C2                  A2                  B2                  D2
              500000                   0                   0                   0                   0
# fct_ID12        H2  fct_ID22  fct_ID32  fct_ID42                    delta_min2          delta_max2
         2         1         0         0         0                        -.5E-1               .5E-1
#                 F2                  E2             Ascale2             Hscale2
                   0                   0                   0                   0
#                 K3                  C3                  A3                  B3                  D3
              500000                   0                   0                   0                   0
# fct_ID13        H3  fct_ID23  fct_ID33  fct_ID43                    delta_min3          delta_max3
         2         1         0         0         0                        -.5E-2               .5E-2
#                 F3                  E3             Ascale3             Hscale3
                   0                   0                   0                   0
#                 K4                  C4                  A4                  B4                  D4
             5000000                   0                   0                   0                   0
# fct_ID14        H4  fct_ID24  fct_ID34  fct_ID44                    delta_min4          delta_max4
         0         1         0         0         0                         -.015                .015
#                 F4                  E4             Ascale4             Hscale4
                   0                   0                   0                   0
#                 K5                  C5                  A5                  B5                  D5
             5000000                   0                   0                   0                   0
# fct_ID15        H5  fct_ID25  fct_ID35  fct_ID45                    delta_min5          delta_max5
         0         1         0         0         0                         -.015                .015
#                 F5                  E5             Ascale5             Hscale5
                   0                   0                   0                   0
#                 K6                  C6                  A6                  B6                  D6
             5000000                   0                   0                   0                   0
# fct_ID16        H6  fct_ID26  fct_ID36  fct_ID46                    delta_min6          delta_max6
         0         1         0         0         0                         -.015                .015
#                 F6                  E6             Ascale6             Hscale6
                   0                   0                   0                   0
#                 V0              Omega0               F_cut   Fsmooth
                   0                   0                   0         0
#                  C                   n               alpha                beta
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  7. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
spotweld tensile function                                                                           
#                  X                   Y
              -250.0             -8250.0
               -0.25             -8250.0
                 0.0                 0.0
                0.25              8250.0
               250.0              8250.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
Spotweld shear function                                                                             
#                  X                   Y
              -250.0            -25000.0
               -0.25            -25000.0
                 0.0                 0.0
                0.25             25000.0
               250.0             25000.0
#enddata

Comments

  1. When used with /PROP/TYPE23 (SPR_MAT), this material law has the same behavior as spring property /PROP/SPR_BEAM.
  2. Inputs repeated for each degree of freedom (DOF) ii are defined with the following directions:
    • ii =1: tension/compression
    • ii =2: shear xy
    • ii =3: shear xz
    • ii =4: torsion
    • ii =5: bending y
    • ii =6: bending z
  3. The spring's XX direction is defined using nodes N1 and N2 of the spring.
    If the node of the spring N3 is defined, the spring's Y direction is defined using nodes N1 and N3 of the spring. N3, N2, and N1 should not be in a line.

    prop_spr_beam14
    Figure 1.
    • The Z direction is:(1)
      Z=XΛY
    • If node N3 is not defined in the element input, and skew system is defined in the /PROP/TYPE23 (SPR_MAT) input, the Z direction is:(2)
      Z=XΛYskew
    • If neither node N3 nor skew system are defined in input, the Z direction is:(3)
      Z=XΛYglobal
    Except when the spring local X direction and Yglobal are colinear then:(4)
    Z=XΛXglobal
    Finally, Y direction is found as:(5)
    Y=ZΛX
  4. If Ileng = 1, the spring stiffness properties are related on the initial spring length. The input should be entered as:
    K=k*l0
    C=c*l0
    Each spring will then have the following properties in the model:
    k=Kl0
    c=Cl0
    Where,
    K and C
    Spring values entered in the spring property fields
    k and c
    Spring’s actual physical mass, inertia, stiffness and damping
    l0
    Initial spring length which is the distance between node N1 and N2 of the spring
    δ1min and δ1max
    Failure values entered as engineering strain
  5. Force and moment computation. For additional information, refer to Stiffness Formulation in the User Guide.

    If Ileng = 0, translational DOFs i =1,2,3 - use displacement to determine spring forces and use rotational angle in radians for rotational DOFs i =4,5,6 to determine spring moments.

    The values of forces and moments in the spring are computed as:
    • Linear spring:

      F(δ)=Kiδi+Ci˙δi with i =1,2,3

      M(θ)=Kiθi+Ci˙θi with i =4,5,6

    • Nonlinear spring:

      F(δ)=f(δiAscalei)[Ai+Biln|˙δiDi|+Eig(˙δiFi)]+Ci˙δi+Hscaleih(˙δiFi) with i =1,2,3

      M(θ)=f(θiAscalei)[Ai+Biln|˙θiDi|+Eig(˙θiFi)]+Ci˙θi+Hscaleih(˙θiFi) with i =4,5,6

      Where,
      • δi (with l0<δi<+ ) is the difference between the current length l and the initial length l0 of the spring element for corresponding translational DOF.
      • θi is the relative angle for corresponding rotational DOF in radians.
      • For linear springs, f(δ),g(˙δ) and h(˙δ),(f(θ),g(˙θ)andh(˙θ)) are zero functions and Ai , Bi , Ei and Hscalei are not taken into account.
      • If stiffness function f(δ) or f(θ) is requested, then K is used as a slope for unloading only.
      • If K is lower than the maximum slop of function f(δ) or f(θ) ( K is not consistent with the maximum slope of the curve), K is set to the maximum slope of the curve.

    If Ileng = 1, translational DOFs i =1,2,3 - use engineering strain (elongation per unit length) to determine spring forces and use rotational per unit length for rotational DOFs i =4,5,6 to determine spring moments. Spring parameters are related to initial spring length.

    The forces and moments in the spring are computed as:
    • F(ε)=f(εiAscalei)[Ai+Biln(max(1,|˙εiDi|))+Eig(˙εiFi)]+Ci˙εi+Hscaleih(˙εiFi) with i =1,2,3
    • M(θl0)=f(θl0iAscalei)[Ai+Biln(max(1,|˙θl0iDi|))+Eig(˙θl0iFi)]+Ciθl0i+Hscaleih(˙θl0iFi) with i =4,5,6
    Where,
    εi=δil0
    Engineering strain
    θl0
    Rotation divided by the original spring length
  6. Time step calculation.
    • Time step for translational DOF is computed as:(6)
      Δti=Mmax(Ki)+Ci2Cimax(Ki)

      with i =1, 2, 3

    • Time step for rotational DOF is computed as:(7)
      Δti=Imax(K'i)+C'i2C'imax(K'i)

      with i =4, 5, 6

    Where,
    K'i=max(Kt)L2+max(Ki)
    C'i=max(Ct)L2+max(Ci)

    with i =1, 2, 3 and i =4, 5, 6 and min(Δti) is used as spring time step.

  7. Failure criteria:
    • For uni-directional failure criteria Ifail=0, the spring fails as soon as one of the criteria is met in one direction:(8)
      αi(δiδimax)1
      or(9)
      αi|δiδimin|1
      with δimax and δimin being the failure limits in direction i =1,2,3(10)
      αi(θiθimax)1
      or(11)
      αi|θiθimin|1

      with θimax and θimin being the failure limits in direction i =4,5,6

      For each direction δimin (or θimin ) should be negative and δimax (or θimax ) should be positive. If the values are zero, then no failure will be considered.

    • For multi-directional failure criteria Ifail=1, the spring fails when the following criteria is fulfilled:(12)
      i=1,2,3αi(δiδifail)βi+i=4,5,6αi(θiθifail)βi1
      • For "old" displacement formulation (Ifail2 = 0), the coefficients αi and βi are equal to 1.0 and 2.0, respectively.
      • The new displacement formulation (Ifail2 =1) allows to model velocity dependent failure limit for translational DOF:(13)
        δifail={δimax+ci|viv0|ni,if(δi>0)δiminci|viv0|ni,if(δi0)
        with i =1,2,3(14)
        θifail={θimax+ci|ωiω0|ni,if(θi>0)θiminci|ωiω0|ni,if(θi0)

        with i =4,5,6

        Where, δimin or δimax is the static displacement failure limit (Lines 5, 8 and 11), and ν0 is the reference velocity.

        Where, θimin or θimax is the static rotation failure limit (Lines 14, 17 and 20), and ω0 is the reference velocity.

        Relative velocity coefficients, ci (with i =1,2,3) have the units of displacement and ci (with i =4,5,6) have the units of rotation.

      • Force or moment failure criteria is activated with Ifail2=2:(15)
        δifail={δimax+ci|viv0|ni,if(δi>0)δiminci|viv0|ni,if(δi0)
        with i =1,2,3 for force criteria(16)
        θifail={θimax+ci|ωiω0|ni,if(θi>0)θiminci|ωiω0|ni,if(θi0)

        with i =4,5,6 for moment criteria

        Where, δimin or δimax is the static failure limit force (Lines 5, 8, and 11) and ν0 is the reference velocity.

        Where, θimin or θimax is the static failure limit moment (Lines 14, 17 and 20), and ω0 is the reference velocity.

        Relative velocity coefficients, ci (with i =1,2,3) have the units of force and ci (with i =4,5,6) have the units of momentum.

      • Energy failure criteria is activated with Ifail2= 3:(17)
        δifail=δimax+ci|viv0|ni,if(δi>0)

        with i =1,2,3

        (18)
        θifail=θimax+ci|ωiω0|ni,if(θi>0)

        with i =4,5,6

        Where, δimax is the static failure limit translational energy (Lines 5, 8, and 11) and ν0 is the reference velocity.

        Where, θimax is the static failure limit rotational energy (Lines 14, 17 and 20), and ω0 is the reference velocity.

        In this case, the displacement values are replaced by positive failure energy values and the rotation values are replaced by positive failure energy values.

        Relative velocity coefficients, ci have the units of energy.

  8. Spring elements with sensor activation or deactivation are mainly used in the pretension models.