/MAT/LAW10 (DPRAG1)

Block Format Keyword This law, based on an extended Drücker-Prager yield criteria, is used to model materials with internal friction such as rock-concrete.

The yield criteria is pressure dependent. To compute the pressure an equation of state must be provided (such as /EOS/COMPACTION). This law is compatible only with solid elements.
Important: Starting in version 2021, the equation of state (EOS) parameters were removed from this material law. Any model using the old format that includes the EOS parameters will be converted during import into the updated material law format with an associated /EOS/COMPACTION.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW10/mat_ID/unit_ID or /MAT/DPRAG1/mat_ID/unit_ID
mat_title
ρi                
E ν MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AE@            
A0 A1 A2 Amax    
ΔPmin MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiuamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaaaa@3B2F@              

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρi Initial density.

(Real)

[kgm3]
E Young's modulus.

(Real)

[Pa]
ν MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AE@ Poisson's ratio.

(Real)

 
A0 Yield criteria coefficient.

(Real)

[Pa2]
A1 Yield criteria coefficient.

(Real)

[Pa]
A2 Yield criteria coefficient.

(Real)

 
Amax Yield criteria limit (von Mises limit).

(Real)

[Pa2]
ΔPmin MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiuamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaaaa@3B2F@ Minimum pressure.

Default = -1030 (Real)

[Pa]

Example (Concrete)

#RADIOSS STARTER
/UNIT/1
unit for mat
                   g                  cm                 mus
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW10/1/1
Concrete
#              RHO_I
                 2.4                   
#                  E                  Nu
                .576                 .25
#                 A0                  A1                  A2                Amax
            9.72E-10             4.32E-5                 .48                .013
#              P_min 
              -1E-20 
/EOS/COMPACTION/1/1
Concreate EOS
#                 C0                  C1                  C2                  C3
                 0.0               0.256               0.256                   1
#              MUMIN               MUMAX                BUNL
                 0.0                0.44               0.115
#                PSH                RHO0
                   0                2.40  
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA

Comments

  1. Original Drücker-Prager yield criterion has a linear pressure dependency.


    Figure 1. Original Drücker-Prager Yield Criteria
    Radioss is using the extended Drücker-Prager yield criteria whose pressure dependency is nonlinear.


    Figure 2. Extended Drücker-Prager Yield Criteria Implemented in Radioss
  2. Extended Drücker-Prager yield criteria can be compared with Mohr-Coulomb criteria.


    Figure 3. Extended Drücker-Prager Yield Criteria Implemented in Radioss versus Mohr-Coulomb Criteria
    An extended Drücker-Prager yield criterion can be fitted from Mohr-Coulomb parameters:
    c MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@
    Cohesion parameter
    ϕ
    Angle of internal friction
    For this purpose, parameters A0,A1,A2 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaIWaaabeaakiaacYcacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadgeadaWgaaWcbaGaaGOmaaqabaaaaa@3C72@ must be defined as:(1)

    A0=k(c,ϕ)2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Jaam4AamaabmaabaGaam4yaiaacYcacqaHvpGzaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@4255@

    A1=6k(c,ϕ)×α(ϕ) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGOnaiaadUgadaqadaqaaiaadogacaGGSaGaeqy1dygacaGLOaGaayzkaaGaey41aqRaeqySde2aaeWaaeaacqaHvpGzaiaawIcacaGLPaaaaaa@4934@

    A2=9α(ϕ)2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGyoaiabeg7aHnaabmaabaGaeqy1dygacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@4231@

    Modeling Type
    Parameters
    Circumscribed Drücker-Prager criteria
    k=6c×cos(ϕ)3(3sin(ϕ))α=2sin(ϕ)3(3sin(ϕ)) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGRbGaeyypa0ZaaSaaaeaacaaI2aGaam4yaiabgEna0kGacogacaGGVbGaai4CaiaacIcacqaHvpGzcaGGPaaabaWaaOaaaeaacaaIZaaaleqaaOWaaeWaaeaacaaIZaGaeyOeI0Iaci4CaiaacMgacaGGUbGaaiikaiabew9aMjaacMcaaiaawIcacaGLPaaaaaaabaGaeqySdeMaeyypa0ZaaSaaaeaacaaIYaGaci4CaiaacMgacaGGUbGaaiikaiabew9aMjaacMcaaeaadaGcaaqaaiaaiodaaSqabaGcdaqadaqaaiaaiodacqGHsislciGGZbGaaiyAaiaac6gacaGGOaGaeqy1dyMaaiykaaGaayjkaiaawMcaaaaaaaaa@5F3D@
    Middle Circle
    k=6c×cos(ϕ)3(3+sin(ϕ))α=2sin(ϕ)3(3+sin(ϕ)) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGRbGaeyypa0ZaaSaaaeaacaaI2aGaam4yaiabgEna0kGacogacaGGVbGaai4CaiaacIcacqaHvpGzcaGGPaaabaWaaOaaaeaacaaIZaaaleqaaOWaaeWaaeaacaaIZaGaey4kaSIaci4CaiaacMgacaGGUbGaaiikaiabew9aMjaacMcaaiaawIcacaGLPaaaaaaabaGaeqySdeMaeyypa0ZaaSaaaeaacaaIYaGaci4CaiaacMgacaGGUbGaaiikaiabew9aMjaacMcaaeaadaGcaaqaaiaaiodaaSqabaGcdaqadaqaaiaaiodacqGHRaWkciGGZbGaaiyAaiaac6gacaGGOaGaeqy1dyMaaiykaaGaayjkaiaawMcaaaaaaaaa@5F27@
    Inscribed Drücker-Prager criteria
    k=3c×cos(ϕ)9+3sin2(ϕ)α=sin(ϕ)9+3sin2(ϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGRbGaeyypa0ZaaSaaaeaacaaIZaGaam4yaiabgEna0kGacogacaGGVbGaai4CaiaacIcacqaHvpGzcaGGPaaabaWaaOaaaeaacaaI5aGaey4kaSIaaG4maiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaacIcacqaHvpGzcaGGPaaaleqaaaaaaOqaaiabeg7aHjabg2da9maalaaabaGaci4CaiaacMgacaGGUbGaaiikaiabew9aMjaacMcaaeaadaGcaaqaaiaaiMdacqGHRaWkcaaIZaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiabew9aMjaacMcaaSqabaaaaaaaaa@5D3E@


    Figure 4. Fitting a Drücker-Prager Yield Criteria (blue colors) from Mohr-Coulomb Criterion (black)
  3. /MAT/LAW21 is also based on an extended Drücker-Prager yield criteria but pressure evolution can be described with user functions.
  4. Young's modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AE@ are used to determined shear modulus G which is required for sound speed calculation in solid materials.