/MAT/LAW102 (DPRAG2)

Block Format Keyword This law, based on extended Drücker-Prager yield criteria, is used to model materials with internal friction such as rock-concrete. The plastic behavior of these materials is dependent on the pressure in the material.

This law is similar to /MAT/LAW10 (DRAGP1); the only difference being that yield criterial is calculated from the Mohr-Coulomb parameters c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ and ϕ . The aim is to calculate the Drücker-Prager criteria that fit the Mohr-Coulomb criteria.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW102/mat_ID/unit_ID or /MAT/DPRAG2/mat_ID/unit_ID
mat_title
ρ i                
Iform                  
E ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AE@            
c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ ϕ Amax        
Pmin                

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
Iform Formulation flag. 1
= 1 (Default)
Circumscribed criterion.
= 2
Middle criterion.
= 3
Inscribed criterion.

(Integer)

 
E Young's modulus.

(Real)

[ Pa ]
ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AE@ Poisson's ratio.

(Real)

 
c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ Cohesion (Mohr-Coulomb parameter).

(Real)

[ Pa ]
ϕ Internal friction angle (Mohr-Coulomb parameter).

(Real)

[ deg ]
Amax Yield criteria limit.

Default = 1030 (Real)

[ Pa 2 ]
Pmin Minimum pressure (usually negative or zero, positive value for tension).

Default = -1030 (Real)

[ Pa ]

Example (Concrete)

#RADIOSS STARTER
/UNIT/1
unit for mat
                   g                  mm                 ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/DPRAG2/102/1
Concrete
#              RHO_I
               .0024
#    Iform
         2
#                  E                  NU
               61000                 .17 
#                  c                 PHI                AMAX
                  50                  40                 0.0
#              P_min       
                   0            
/EOS/POLYNOMIAL/102/1
Concrete
#                 C0                  C1                  C2                  C3
                   0               10000                   0                   0
#                 C4                  C5                 Psh                Rho0
                   0                   0                   0               .0024
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. An extended Drücker-Prager yield criteria can be defined as:


    Figure 1.

    The aim of this material law is to automatically compute A0, A1, A2 parameters from Mohr-Coulomb parameters c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ (cohesion) and ϕ (angle of internal friction).

    The Mohr-Coulomb criteria is usually defined by:(1)
    τ = c σ n tan ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey ypa0Jaam4yaiabgkHiTiabeo8aZnaaBaaaleaacaWGUbaabeaakiGa cshacaGGHbGaaiOBaiabew9aMbaa@421C@
    Where,
    τ
    Shear stress
    σ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaad6gaaeqaaaaa@38D9@
    Normal stress
    c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@
    Cohesion
    ϕ
    Angle of internal friction
    From the Mohr-Coulomb parameters three different extended Drücker-Prager yield criteria can be calculated.


    Figure 2. Drücker-Prager Yield Criteria from Mohr-Coulomb Parameters

    The following values are computed: A 0 = k 2 ,   A 1 = 6 k α ,   A 2 = 9 α 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIWaaabeaakiabg2da9iaadUgadaahaaWcbeqaaiaaikda aaGccaGGSaGaaeiiaiaadgeadaWgaaWcbaGaaGymaaqabaGccqGH9a qpcaaI2aGaam4Aaiabeg7aHjaacYcacaqGGaGaamyqamaaBaaaleaa caaIYaaabeaakiabg2da9iaaiMdacqaHXoqydaahaaWcbeqaaiaaik daaaGccaqGGaaaaa@49FE@

    Where,
    Criteria k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E6@ α
    Circumscribed k = 6. c . cos ( φ ) 3 . ( 3 sin ( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaam4Aaiabg2 da9maalaaabaGaaGOnaiaac6cacaWGJbGaaiOlaiGacogacaGGVbGa ai4CaiaacIcacqaHgpGAcaGGPaaabaWaaOaaaeaacaaIZaWaaSbaaS qaaaqabaaabeaakiaac6cacaGGOaGaaG4maiabgkHiTiGacohacaGG PbGaaiOBaiaacIcacqaHgpGAcaGGPaGaaiykaaaaaaa@4B99@ α = 2. s i n ( φ ) 3 . ( 3 sin ( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqySdeMaey ypa0ZaaSaaaeaacaaIYaGaaiOlaiaacohacaGGPbGaaiOBaiaacIca cqaHgpGAcaGGPaaabaWaaOaaaeaacaaIZaWaaSbaaSqaaaqabaaabe aakiaac6cacaGGOaGaaG4maiabgkHiTiGacohacaGGPbGaaiOBaiaa cIcacqaHgpGAcaGGPaGaaiykaaaaaaa@4AAD@
    Middle k = 6. c . cos ( φ ) 3 . ( 3 + sin ( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaam4Aaiabg2 da9maalaaabaGaaGOnaiaac6cacaWGJbGaaiOlaiGacogacaGGVbGa ai4CaiaacIcacqaHgpGAcaGGPaaabaWaaOaaaeaacaaIZaWaaSbaaS qaaaqabaaabeaakiaac6cacaGGOaGaaG4maiabgUcaRiGacohacaGG PbGaaiOBaiaacIcacqaHgpGAcaGGPaGaaiykaaaaaaa@4B8E@ α = 2. s i n ( φ ) 3 . ( 3 + sin ( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqySdeMaey ypa0ZaaSaaaeaacaaIYaGaaiOlaiaacohacaGGPbGaaiOBaiaacIca cqaHgpGAcaGGPaaabaWaaOaaaeaacaaIZaWaaSbaaSqaaaqabaaabe aakiaac6cacaGGOaGaaG4maiabgUcaRiGacohacaGGPbGaaiOBaiaa cIcacqaHgpGAcaGGPaGaaiykaaaaaaa@4AA2@
    Inscribed k = 3. c . cos ( φ ) 9 + 3 sin 2 ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaam4Aaiabg2 da9maalaaabaGaaG4maiaac6cacaWGJbGaaiOlaiGacogacaGGVbGa ai4CaiaacIcacqaHgpGAcaGGPaaabaWaaOaaaeaacaaI5aGaey4kaS IaaG4maiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaa cIcacqaHgpGAcaGGPaaaleqaaaaaaaa@4A4D@ α = sin ( φ ) 9 + 3 sin 2 ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqySdeMaey ypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaeqOXdOMaaiyk aaqaamaakaaabaGaaGyoaiabgUcaRiaaiodaciGGZbGaaiyAaiaac6 gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqOXdOMaaiykaaWcbeaa aaaaaa@47F8@
  2. Pressure P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@ is defined through an equation of state (/EOS).
    Where,
    P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbaaaa@39AC@
    Pressure in material.
    μ
    Volumetric strain with μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaSaaaeaacqaHbpGCaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baaaaOGaeyOeI0IaaGymaaaa@3EDA@ .
    E = E int V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9maalaaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamOvaaaaaaa@3C8A@
    Energy density.

    Unloading:

    If μ μ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey izImQaeqiVd02aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3E17@ , then unloading bulk modulus, B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGcbaaaa@399E@ is used for unloading/reloading path. For each μ over μ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3AAC@ , unloading path is the same as loading path.

  3. Drücker-Prager yield criteria is given by:(2)
    F = J 2 ( A 0 + A 1 P + A 2 P 2 )

    mat_law10B
    Figure 3.
    Where,
    J 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaaIYaaabeaaaaa@37AE@
    Second invariant of deviatoric stress, with σ V M = 3 J 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadAfacaWGnbaabeaakiabg2da9maakaaabaGaaG4maiaa dQeadaWgaaWcbaGaaGOmaaqabaaabeaaaaa@3D27@
    P
    Pressure, with P = I 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 da9maalaaabaGaeyOeI0IaamysamaaBaaaleaacaaIXaaabeaaaOqa aiaaiodaaaaaaa@3B4B@ ( I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaaaaa@37AC@ is the first stress invariant)
    A 1 = A 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiabg2da9iaadgeadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcaaIWaaaaa@3C2C@
    Yield criteria is von Mises ( σ V M = 3 A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadAfacaWGnbaabeaakiabg2da9maakaaabaGaaG4maiaa dgeadaWgaaWcbaGaaGimaaqabaaabeaaaaa@3D1C@ )

    The polynomial expression should have at least one root and should be increasing.

  4. Pressure is always a total pressure. To model a relative pressure, the /EOS, Psh parameter must be used to shift the pressure output.
  5. The yield maximum Amax is as the yield function becomes:(3)
    J 2 =min( A max ,( A 0 + A 1 P+ A 2 P 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaaIYaaabeaakiabg2da9iGac2gacaGGPbGaaiOBamaabmaa baGaamyqamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaaiilai aacIcacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamyqamaa BaaaleaacaaIXaaabeaakiaadcfacqGHRaWkcaWGbbWaaSbaaSqaai aaikdaaeqaaOGaamiuamaaCaaaleqabaGaaGOmaaaakiaacMcaaiaa wIcacaGLPaaaaaa@4C77@