Ityp = 0
Block Format Keyword This law enables to model a gas inlet condition by providing data from stagnation point. Gas is supposed to be a perfect gas.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID  
mat_title  
${\rho}_{i}^{\mathit{stagnation}}$  ${\rho}_{0}^{\mathit{stagnation}}$  
Ityp  P_{sh}  Fscale_{T} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

node_ID_{V}  C_{1}  C_{d}  
$\mathit{fct}\_{\mathit{ID}}_{\rho}$  
fct_ID_{p}  ${P}_{0}^{\mathit{stagnation}}$  
Blank Format  
Blank Format  
fct_ID_{T}  fct_ID_{Q} 
Definitions
Field  Contents  SI Unit Example 

mat_ID  Material
identifier. (Integer, maximum 10 digits) 

unit_ID  Unit Identifier. (Integer, maximum 10 digits) 

mat_title  Material
title. (Character, maximum 100 characters) 

${\rho}_{i}^{\mathit{stagnation}}$  Initial stagnation
density. 3 (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$ 
${\rho}_{0}^{\mathit{stagnation}}$  Reference density used in
E.O.S (equation of state). Default ${\rho}_{0}^{\mathit{stagnation}}={\rho}_{\mathrm{i}}^{\mathit{stagnation}}$ (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$ 
Ityp  Boundary condition type.
1
(Integer) 

P_{sh}  Pressure shift. 2 (Real) 
$\left[\text{Pa}\right]$ 
Fscale_{T}  Time scale factor. 3 (Real) 
$\left[\text{s}\right]$ 
node_ID_{V}  Node identifier for velocity computation. 4
(Integer) 

$\gamma $  Perfect gas
constant. (Real) 

C_{d}  Discharge coefficient.
5 (Real) 

fct_ID $\rho $  Function
${f}_{\rho}(t)$
identifier for stagnation
density. 3
(Integer) 

fct_ID_{p}  Function
${f}_{P}(t)$
identifier for stagnation
pressure. 3
(Integer) 

${P}_{0}^{\mathit{stagnation}}$  Initial stagnation
pressure. 3 (Real) 
$\left[\text{Pa}\right]$ 
fct_ID_{T}  Function
${f}_{T}(t)$
identifier for inlet
temperature. 3
6
(Integer) 

fct_ID_{Q}  Function
${f}_{Q}(t)$
identifier for inlet heat
flux. 3
6
(Integer) 
Comments
 Provided gas state from
stagnation point
$\left({\rho}_{\mathit{stagnation},\text{\hspace{0.17em}}}{P}_{\mathit{stagnation}}\right)$
is used to compute inlet gas state.A set of equations including Total Enthalpy formulation, Adiabatic Law and Equation of State allows for the complete definition of the inlet state:
(1) $$\begin{array}{l}{\rho}_{\mathit{in}}={\rho}_{\mathit{stagnation}}\cdot {\left[1\frac{\gamma 1}{2\gamma}\cdot \frac{{\rho}_{\mathit{stagnation}}}{{P}_{\mathit{stagnation}}}\cdot (1+{C}_{d})\cdot {v}_{\mathit{in}}^{2}\right]}^{\frac{1}{\gamma 1}}\\ {P}_{\mathit{in}}={P}_{\mathit{stagnation}}{\left(\frac{{\rho}_{\mathit{in}}}{{\rho}_{\mathit{stagnation}}}\right)}^{\gamma}\\ {(\rho e)}_{\mathit{in}}=\frac{{P}_{\mathit{in}}}{\gamma 1}\end{array}$$  The P_{sh} parameter enables shifting the output pressure which also becomes PP_{sh}. If using P_{sh}=P(t=0), the output pressure will be $\text{\Delta}P$ , with an initial value of 0.0.
 If no function is defined, then related quantity $\left({P}_{\mathit{stagnation}},\text{\hspace{0.17em}}{\rho}_{\mathit{stagnation}},\text{\hspace{0.17em}}T,\text{\hspace{0.17em}}\mathit{or}\text{\hspace{0.17em}}Q\right)$ remains constant and set to its initial value. However, all input quantities $\left({P}_{\mathit{stagnation}},\text{\hspace{0.17em}}{\rho}_{\mathit{stagnation}},\text{\hspace{0.17em}}T,\text{\hspace{0.17em}}\mathit{and}\text{\hspace{0.17em}}Q\right)$ can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using Fscale_{T} parameter which leads to use f (Fscale_{t} * t) instead of f(t).
 Inlet velocity ${v}_{\mathit{in}}$ is used in Bernoulli theory.
 Discharge coefficient accounts
for entry loss and depends on shape orifice.
 With thermal modeling, all thermal data ( ${T}_{0},\text{\hspace{0.17em}}{\rho}_{0}{C}_{P}$ , ...) can be defined with /HEAT/MAT.
 It is not possible to use this boundary material law with multimaterial ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).