Iform = 5

Block Format Keyword This boundary can simulate liquid inlet conditions for multi-material ALE laws (formulation: Iform = 0, 1, 10, or 11).

The boundary sub-material state is calculated from a state at a stagnation point which is provided by the user. When using this feature, it is no longer necessary to use imposed velocity (/IMPVEL) where the velocity is computed by numerical scheme.

The user provides the stagnation where α s t a g n a t i o n = α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHXoqydaWgaaWcba GaaGimaaqabaaaaa@4632@ , ρ s t a g n a t i o n = ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcba GaaGimaaqabaaaaa@4674@ , E s t a g n a t i o n = E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0JaamyramaaBaaaleaaca aIWaaabeaaaaa@4488@ ( E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbaaaa@3832@ is optional) which corresponds to the state for which υ =0. From a linear EOS: P 0 = C 0 + C 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaaIWaaa beaakiabgUcaRiaadoeadaWgaaWcbaGaaGymaaqabaGccqaH8oqBaa a@403C@ ; thus P s t a g n a t i o n = C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0Jaam4qamaaBaaaleaaca aIWaaabeaaaaa@4491@ .

At each cycle Radioss computes the liquid inlet state so that the Bernoulli theory is satisfied () using velocity at inlet face.

law51_iform4
Figure 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW51/mat_ID/unit_ID
mat_title
Blank Format
Iform                  
#Global Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Scaletime PEXT          
#Material1 Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 1 ρ 0 mat _ 1 E 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_IDα1 fct_ID ρ 1 fct_IDE1  
C 1 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@        
Δ P min mat _ 1 C 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          
#Material2 Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 2 ρ 0 mat _ 2 E 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_IDα2 fct_ID ρ 2 fct_IDE2  
C 1 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@        
Δ P min mat _ 2 C 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          
#Material3 Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 3 ρ 0 mat _ 3 E 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_IDα3 fct_ID ρ 3 fct_IDE3  
C 1 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@        
Δ P min mat _ 3 C 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Interger, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
Iform Formulation flag.
= 5
Liquid Inlet (computed from data at stagnation point).

(Integer)

 
Scaletime Abscissa scale factor for input functions. 2

Default = 1 (Real)

 
PEXT External (ambient) pressure. 3

(Real)

[ Pa ]
α 0 mat _ i Initial volumetric fraction. 4

(Real)

 
ρ 0 mat _ i Initial density at stagnation point. 1

(Real)

[ kg m 3 ]
E 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ Initial energy at stagnation point. 5

(Real)

[ J m 3 ]
fct_IDαi (Optional) Volumetric fraction scaling function f α i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacqaHXoqypaWaaSbaaWqaa8qacaWG PbaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaaaaa@3D61@ identifier. 6
= 0
α m a t i ( t ) = α 0 m a t i
> 0
α m a t i ( t ) = α 0 m a t i f α i ( t )

(Integer)

 
fct_ID ρ i (Optional) Density fraction scaling function f ρ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacqaHbpGCpaWaaSbaaWqaa8qacaWG PbaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaaaaa@3D82@ identifier.
= 0
P m a t i ( t ) = P 0 m a t i
> 0
P m a t i ( t ) = P 0 m a t i f P i ( t )

(Integer)

 
fct_IDEi (Optional) Energy fraction scaling function f E i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacaWGfbWdamaaBaaameaapeGaamyA aaWdaeqaaaWcbeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaaa@3C8C@ identifier.
= 0
E m a t i ( t ) = E 0 m a t i
> 0
E m a t i ( t ) = E 0 m a t i f E i ( t )

(Integer)

 
C 1 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ Coefficient for perfect gas EOS. 5

(Real)

[ Pa ]
Δ P min mat _ i Hydrodynamic cavitation pressure. 6

Default = -10-30 (Real)

[ Pa ]
C 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ Coefficient for perfect gas EOS. 5

(Real)

[ Pa ]

Comments

  1. Provided gas state from stagnation point ρ stagnation , P stagnation is used to compute liquid inlet state. Bernoulli theory is applied:(1)
    P stagnation = P in + ρ in v in 2 2
    This leads to sub-material state in inlet boundary element:(2)
    ρ i n = C 1 ρ s t a g n a t i o n C 1 + ρ s t a g n a t i o n v i n 2 2 ( 1 + C d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeg8aY9aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGa eyypa0ZaaSaaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaeyyXICTaeqyWdi3damaaBaaaleaapeGaam4Caiaadsha caWGHbGaam4zaiaad6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaa WdaeqaaaGcbaWdbiaadoeapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSYaaSaaa8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaado hacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWGPbGaam4B aiaad6gaa8aabeaak8qacaWG2bWaaSbaaSqaaiaadMgacaWGUbaabe aakmaaCaaaleqabaGaaGOmaaaaaOWdaeaapeGaaGOmaaaadaqadaWd aeaapeGaaGymaiabgUcaRiaadoeapaWaaSbaaSqaa8qacaWGKbaapa qabaaak8qacaGLOaGaayzkaaaaaaaa@6498@
    Where, C d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadoeapaWaaSbaaSqaa8qacaWGKbaapaqabaaaaa@388A@ is an optional drop parameter.(3)
    P i n = P s t a g n a t i o n ρ s t a g n a t i o n v i n 2 2 ( 1 + C d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfapaWaaSbaaSqaa8qacaWGPbGaamOBaaWdaeqaaOWdbiab g2da9iaadcfapaWaaSbaaSqaa8qacaWGZbGaamiDaiaadggacaWGNb GaamOBaiaadggacaWG0bGaamyAaiaad+gacaWGUbaapaqabaGcpeGa eyOeI0YaaSaaa8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaca WG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWGPbGaam4Baiaa d6gaa8aabeaak8qacaWG2bWaaSbaaSqaaiaadMgacaWGUbaabeaakm aaCaaaleqabaGaaGOmaaaaaOWdaeaapeGaaGOmaaaadaqadaWdaeaa peGaaGymaiabgUcaRiaadoeapaWaaSbaaSqaa8qacaWGKbaapaqaba aak8qacaGLOaGaayzkaaaaaa@5C66@
    (4)
    ( ρe ) in =( 1 ρ in ρ stagnation ) P in + E stagnation MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaabmaapaqaa8qacqaHbpGCcaWGLbaacaGLOaGaayzkaaWdamaa BaaaleaapeGaamyAaiaad6gaa8aabeaak8qacqGH9aqpdaqadaWdae aapeGaaGymaiabgkHiTmaalaaapaqaa8qacqaHbpGCpaWaaSbaaSqa a8qacaWGPbGaamOBaaWdaeqaaaGcbaWdbiabeg8aY9aadaWgaaWcba WdbiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWG PbGaam4Baiaad6gaa8aabeaaaaaak8qacaGLOaGaayzkaaGaamiua8 aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGaey4kaSIaamyr a8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWGUbGaam yyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaaaaa@5FF8@
    Then global material state is determined by computing a mean value:
    Pressure
    Δ P i n = i α m a t i ( t ) Δ P i n m a t _ i
    Density
    ρ i n = i α m a t i ( t ) ρ i n m a t _ i
    Energy
    ( ρ e ) i n = i α m a t i ( t ) E i n m a t _ i
  2. The optional scaling functions can be used such to scale the volumetric, density or energy fractions.
  3. Parameter PEXT enables you to take the ambient pressure into account in case you want to work with relative pressure Δ P min m a t _ i . This parameter is required by Radioss for correct energy integration at each cycle. Otherwise, numerical EOS solving is generally incorrect. It represents pressure which must be added to EOS calculation to obtain total (physical) pressure. It has no influence on pressure contour in animation files.

    Examples using linear EOS:

    Total pressure: P = P a m b + C 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaWGqbWdamaaBaaaleaapeGaamyyaiaad2ga caWGIbaapaqabaGcpeGaey4kaSIaam4qa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqaH8oqBaaa@40F1@ , and also PEXT = 0

    Relative Pressure: Δ P = C 1 μ , and also P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@

  4. Volumetric fractions enable the sharing of elementary volume within the three different materials.

    For each material, α 0 mat _ i must be defined between 0 and 1.

    Sum of initial volumetric fractions i = 1 3 α 0 mat _ i must be equal to 1.

    For automatic initial fraction of the volume, refer to /INIVOL.

  5. Linear EOS is:(5)
    P ( μ , E ) = C 0 + C 1 μ
    This provides flexibility, depending on whether pressure and energy are total or relative:(6)
    P ( μ , E ) = C 0 + C 1 μ

    Where, C 0 = P amp , C 1 = ρ 0 c 0 2 and P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@ .

    This leads to usual form from P ( μ , E ) = C 0 + C 1 μ .(7)
    Δ P ( μ , E ) = C 1 μ

    Where C 1 = ρ 0 c 0 2 and P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@ .

  6. Δ P min mat _ i flag is the minimum value for the computed pressure.

    Since P = Δ P + P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaqGuoGaamiuaiabgUcaRiaadcfapaWaaSba aSqaa8qacaWGfbGaamiwaiaadsfaa8aabeaaaaa@3EDA@ , defining P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@ implies Δ P = P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc facqGH9aqpcaWGqbaaaa@39C1@ and Δ P min = P min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc fadaWgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabg2da9iaadcfa daWgaaWcbaGaciyBaiaacMgacaGGUbaabeaaaaa@3FC7@ .

    Fluid materials pressure must remain positive to avoid any tensile strength, then, P m i n = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aabeaa k8qacqGH9aqpcaaIWaaaaa@3C5B@ leads to Δ P m i n = P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaabs5acaWGqbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaa paqabaGcpeGaeyypa0JaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaadw eacaWGybGaamivaaWdaeqaaaaa@4157@ .

    For solid materials, the default value for Δ P min mat _ i = 1030 is suitable.

  7. Stagnation Energy is optional because this EOS does not depends on energy. The energy input value will only affect output value in animation files and time histories.
  8. EOS parameters must be consistent with liquid EOS from adjacent MM-ALE domain.