/MAT/PLAS_ZERIL

Block Format Keyword This law defines an isotropic elasto-plastic material using the Zerilli-Armstrong plasticity model.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/PLAS_ZERIL/mat_ID/unit_ID
mat_title
ρiρi                
E v            
C0 C5 n εmaxpεmaxp σmax0σmax0
C1 ˙ε0˙ε0 ICC Fsmooth Fcut    
C3 C4 ρCpρCp Tr    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρiρi Initial density

(Real)

[kgm3][kgm3]
E Young's modulus

(Real)

[Pa][Pa]
v Poisson's ratio

(Real)

 
C0 Plasticity yield stress

(Real)

[Pa][Pa]
C5 Plasticity hardening parameter

(Real)

[Pa][Pa]
n Plasticity hardening exponent. 5

Default = 1.0 (Real)

 
εmaxpεmaxp Failure plastic strain.

Default = 1030 (Real)

 
σmax0σmax0 Plasticity maximum stress.

Default = 1030 (Real)

[Pa][Pa]
C1 Strain rate formulation coefficient.

(Real)

[Pa][Pa]
˙ε0˙ε0 Reference strain rate (must be 1 s-1 converted into user's units).

(Real)

[1s][1s]
ICC Strain rate computation flag. 7
= 0 (Default)
Set to 1
= 1
Strain rate effect on σmaxσmax .
= 2
No strain rate effect on σmaxσmax .

(Integer)

 
Fsmooth Smooth strain rate option flag.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering. 8

Default = 1030 (Real)

[Hz][Hz]
C3 Temperature effect coefficient.

(Real)

[1K][1K]
C4 Temperature effect coefficient.
= 0
No strain rate effect.

(Real)

[1K][1K]
ρCpρCp Specific heat per unit of volume.
= 0
Temperature is constant: T = Tr

(Real)

[Jm3K][Jm3K]
Tr Reference temperature.

Default = 298 K (Real)

[K][K]

Comments

  1. The Zerilli-Armstrong law is applicable only to shells and solids.
  2. The equation that describes stress during plastic deformation is: (1)
    σ=C0+(C1exp((C3T+C4Tln(˙ε˙ε0))))+C5εpnσ=C0+(C1exp((C3T+C4Tln(˙ε˙ε0))))+C5εpn
    Where,
    εpεp
    Plastic strain
    ˙ε˙ε
    Strain rate
    TT
    Temperature
  3. Yield stress should be strictly positive.
  4. When ˉεp¯εp reaches εmaxpεmaxp in one integration point, then based on the element type:
    • Shell elements:

      The corresponding shell element is deleted.

    • Solid elements:

      The deviatoric stress of the corresponding integral point is permanently set to 0; however, the solid element is not deleted.

  5. n must be less than 1.
  6. If ˙ε0˙ε0 is 0, there is no strain rate effect.
  7. ICC is a flag of the strain rate effect on material maximum stress σmaxσmax :

    law_plaszeril
    σ=σy(1+cln(˙ε˙εo))σ=σy(1+cln(˙ε˙εo)) σ=σy(1+cln(˙ε˙εo))σ=σy(1+cln(˙ε˙εo))
    σmax=σmax0(1+cln(˙ε˙εo))σmax=σmax0(1+cln(˙ε˙εo)) σmax=σmax0σmax=σmax0
    Figure 1.
  8. Strain rate filtering input (Fcut) is only available for shell and solid elements.
  9. The strain rate filtering is used to smooth strain rates.
  10. Temperature is computed assuming adiabatic conditions:(2)
    Τ=Τr+EintρCρ(Volume)T=Tr+EintρCρ(Volume)

    Where, Eint is the internal energy computed by Radioss.

  11. When the temperature is not initialized using /HEAT/MAT or /INITEMP, the reference temperature (Tr) is also the initial temperature.