MATTHE
Bulk Data Entry Defines material properties for temperature-dependent nonlinear hyperelastic materials.
The Polynomial form is available and various material types (3) can be defined by specifying the corresponding coefficients.
Format A1
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | NA | NU | RHO | TEXP | TREF | ||
MTIME | ND | ||||||||
C10 | C01 | C20 | C11 | C02 | C30 | C21 | C12 | ||
C03 | C40 | C31 | C22 | C13 | C04 | C50 | C41 | ||
C32 | C23 | C14 | C05 | D1 | D2 | D3 | D4 | ||
D5 | T |
Format A2
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | NA | NU | RHO | TEXP | TREF | ||
MTIME | ND | ||||||||
C10 | C20 | C30 | C40 | C50 | D1 | D2 | D3 | ||
D4 | D5 | T |
Format A3
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | 2 | NU | RHO | TEXP | TREF | ||
MTIME | ND | ||||||||
C10 | C01 | D1 | T |
Format A4
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | 1 | NU | RHO | TEXP | TREF | ||
MTIME | ND | ||||||||
C10 | D1 | T |
Format A5
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | 3 | NU | RHO | TEXP | TREF | ||
MTIME | ND | ||||||||
C10 | C20 | C30 | D1 | D2 | D3 | T |
Format B
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | 2 | NU | RHO | TEXP | TREF | ||
MTIME | ND | ||||||||
C1 | λm | D1 | T |
Format C
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | NA | NU | RHO | TEXP | TREF | ||
MTIME | ND | ||||||||
MU1 | ALPHA1 | MU2 | ALPHA2 | MU3 | ALPHA3 | MU4 | ALPHA4 | ||
MU5 | ALPHA5 | D1 | D2 | D3 | D4 | D5 | T |
Format D
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | MID | Model | NA | NU | RHO | TEXP | TREF | ||
MTIME | 0 | ||||||||
MU1 | ALPHA1 | BETA1 | MU2 | ALPHA2 | BETA2 | MU3 | ALPHA3 | ||
BETA3 | MU4 | ALPHA4 | BETA4 | MU5 | ALPHA5 | BETA5 | T |
Example
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | 2 | NEOH | 1 | 0.495 | |||||
LONG | 0 | ||||||||
5.2 (C10) | 10.0 (T) | ||||||||
5.1 (C10) | 20.0 (T) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | 2 | MOONEY | 5 | NU | RHO | TEXP | TREF | ||
MTIME | 1 | ||||||||
C10 | C01 | C20 | C11 | C02 | C30 | C21 | C12 | ||
C03 | C40 | C31 | C22 | C13 | C04 | C50 | C41 | ||
C32 | C23 | C14 | C05 | D1 | T |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | 2 | MOONEY | 3 | NU | RHO | TEXP | TREF | ||
MTIME | 1 | ||||||||
C10 | C01 | C20 | C11 | C02 | C30 | C21 | C12 | ||
C03 | D1 | T |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATTHE | 2 | FOAM | 2 | NU | RHO | TEXP | TREF | ||
MTIME | 0 | ||||||||
MU1 | ALPHA1 | BETA1 | MU2 | ALPHA2 | BETA2 | T |
Definition
Field | Contents | SI Unit Example |
---|---|---|
MID | Unique material identification number. No default (Integer > 0) |
|
Model | Hyperelastic material model type. The input format can vary
for each material model. See the format details in the table
above.
(Character) |
|
NU | Poisson’s ratio. Default = 0.495 (Real) |
|
RHO | Material density. Default = 0.495 (Real) |
|
TEXP | Coefficient of thermal expansion. No default (Real) |
|
TREF | Reference temperature. No default (Real) |
|
NA | Order of the distortional strain energy polynomial function
if the type of the model is generalized polynomial
(MOONEY) or reduced polynomial
(RPOLY). It is also the order of the deviatoric part of the strain energy function of the OGDEN material (Format C). Default = 2 (0 < Integer ≤ 5) |
|
ND | Order of the volumetric strain energy polynomial function.
2 No default (Integer ≥ 0) |
|
Cpq | Material constants related to distortional deformation. No default (Real) |
|
Dp | Material constant related to volumetric deformation
(Model=BOYCE). No default (Real > 0.0) |
|
C1 | Initial shear modulus (Model =
ABOYCE). 4 No default (Real) |
|
λm | Maximum locking stretch. Used to calculate the value of β (Model = ABOYCE). 4 No default (Real) |
|
MUi , ALPHAi | Material constants for the Ogden material model (Model=OGDEN) 5 or Hill foam material Model (Model=FOAM). 6 | |
BETAi | Material constants for Hill foam material model (Model=FOAM). 6 | |
MODULI | Continuation line flag for moduli temporal property. 9 | |
MTIME | Material temporal property. This field controls the
interpretation of the input material property for viscoelasticity.
|
|
T | Temperature at which the defined material properties are
specified. The material data and temperature set can be repeated
as required to define temperature-dependent material data for
hyperelasticity. 1
No default (Real) |
Comments
- MATTHE Bulk
Data is an extension of MATHE Bulk Data to allow
definition of temperature-dependent hyperelastic materials. Currently direct
table input is not supported for MATTHE and only fitted
parameters are allowed. Table inputs should be calibrated by curve-fitting
first for each temperature and then input on the MATTHE
entry.
- The general rule to specify each data block is to define NA distortional strain energy parameters followed by ND volumetric strain energy parameters, subsequently followed by the temperature for these parameters.
- Each temperature material data block may extend into more than one line. Therefore, NA and ND should be specified accurately to indicate how many terms are expected.
- The order of parameters follow the same order as MATHE entry for distortional and bulk parameters, respectively.
- The different temperature values should be defined in ascending order.
- The Generalized polynomial form
(MOONEY) of the Hyperelastic material model is written
as a combination of the deviatoric and volumetric strain energy of the
material. The potential or strain energy density (
W
) is written in polynomial form,
as:Generalized polynomial form (MOONEY):
(1) W=N1∑p+q=1Cpq(ˉI1−3)p(ˉI2−3)q+N2∑p=11Dp(Jelas−1)2pWhere,- N1
- Order of the distortional strain energy polynomial function (NA).
- N2
- Order of the volumetric strain energy polynomial function (ND). Currently only first order volumetric strain energy functions are supported (ND=1).
- Cpq
- The material constants related to distortional deformation ( Cpq ).
- ˉI1 , ˉI2
- Strain invariants, calculated internally by OptiStruct.
- Dp
- Material constants related to volumetric deformation ( Dp ). These values define the compressibility of the material.
- Jelas
- Elastic volume strain, calculated internally by OptiStruct.
- The polynomial form can be used to
model the following material types by specifying the corresponding
coefficients (
Cpq
,
Dp
) on the MATHE
entry.
Physical Mooney-Rivlin Material (MOOR):
N1 = N2 =1(2) W=C10(ˉI1−3)+C01(ˉI2−3)+1D1(Jelas−1)2Reduced Polynomial (RPOLY):
q=0, N2 =1(3) W=N1∑p=1Cp0(ˉI1−3)p+1D1(Jelas−1)2Neo-Hooken Material (NEOH):
N1= N2 =1, q=0(4) W=C10(ˉI1−3)+1D1(Jelas−1)2Yeoh Material (YEOH):
N1 =3 N2 =1, q=0(5) W=C10(ˉI1−3)+1D1(Jelas−1)2+C20(ˉI1−3)2+C30(ˉI1−3)3Some other material models from the Generalized Mooney Rivlin model are:
Three term Mooney-Rivlin Material:(6) W=C10(ˉI1−3)+C01(ˉI2−3)+C11(ˉI1−3)(ˉI2−3)+1D1(Jelas−1)2Signiorini Material:(7) W=C10(ˉI1−3)+C01(ˉI2−3)+C20(ˉI1−3)2+1D1(Jelas−1)2Third Order Invariant Material:(8) W=C10(ˉI1−3)+C01(ˉI2−3)+C11(ˉI1−3)(ˉI2−3)+C20(ˉI1−3)2+1D1(Jelas−1)2Third Order Deformation Material (James-Green-Simpson):(9) W=C10(ˉI1−3)+C01(ˉI2−3)+C11(ˉI1−3)(ˉI2−3) +C20(ˉI1−3)2+C30(ˉI1−3)3+1D1(Jelas−1)2 - The Arruda-Boyce model
(ABOYCE) is defined as:
(10) W=C15∑i=1αiβi−1(ˉIi1−3i)+1D1(Jelas−1)2Where,
β=1N=1λ2m- N
- Measure of the limiting locking stretch.
- λm
- Maximum locking stretch.
- D1
- Related to volumetric deformation. It defines the compressibility of the material.
- ˉI1
- First strain invariant, internally calculated by OptiStruct.
- Jelas
- Elastic volume strain, internally calculated by OptiStruct.
- C1
- Initial shear modulus.
α1=12;α2=120;α3=111050;α4=197000;α5=519673750
- The Ogden Material model
(OGDEN) is defined as:
(11) W=N1∑i=12μiα2i(ˉλαi1+ˉλαi2+ˉλαi3−3)+1D1(Jelas−1)2Where,- ˉλ1,ˉλ2,ˉλ3
- The three deviatoric stretches (deviatoric stretches are related to principal stretches by ˉλi=J13λi )
- μi
- Defined by the MUi fields
- αi
- Defined by the ALPHAi fields
- N1
- Order of the deviatoric part of the strain energy function defined on the NA field
- The Hill Foam Material model
(FOAM) is defined as:
(12) W=N1∑i=12μiα2i(λαi1+λαi2+λαi3−3+1βi(J−αiβi−1))Where,- λ1,λ2,λ3
- Principle stretches
- μi
- Defined by the MUi fields
- αi
- Defined by the ALPHAi fields
- βi
- Defined by the BETAi fields
- N1
- Order of the strain energy function defined on the NA field.
Currently, the Hill material model is only supported for explicit analysis.
- If Poisson’s ratio and D1 are both defined, then Poisson’s ratio takes precedence.
- MATTHE is currently only supported for implicit Large Displacement Nonlinear Analysis.
- The MATTHE hyperelastic material supports CTETRA (4, 10), CPENTA (6, 15), and CHEXA (8, 20) element types.
- This card is represented as a material in HyperMesh.