Processing math: 100%

MATTHE

Bulk Data Entry Defines material properties for temperature-dependent nonlinear hyperelastic materials.

The Polynomial form is available and various material types (3) can be defined by specifying the corresponding coefficients.

Format A1

Generalized Mooney-Rivlin Polynomial (Model=MOONEY):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model NA NU RHO TEXP TREF
MTIME ND
C10 C01 C20 C11 C02 C30 C21 C12
C03 C40 C31 C22 C13 C04 C50 C41
C32 C23 C14 C05 D1 D2 D3 D4
D5 T

Format A2

Reduced Polynomial (Model=RPOLY):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model NA NU RHO TEXP TREF
MTIME ND
C10 C20 C30 C40 C50 D1 D2 D3
D4 D5 T

Format A3

Physical Mooney-Rivlin (Model=MOOR):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model 2 NU RHO TEXP TREF
MTIME ND
C10 C01 D1 T

Format A4

Neo-Hookean (Model=NEOH):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model 1 NU RHO TEXP TREF
MTIME ND
C10 D1 T

Format A5

Yeoh Model (Model=YEOH):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model 3 NU RHO TEXP TREF
MTIME ND
C10 C20 C30 D1 D2 D3 T

Format B

Arruda-Boyce Model (Model=ABOYCE):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model 2 NU RHO TEXP TREF
MTIME ND
C1 λm D1 T

Format C

Ogden Material Model (Model=OGDEN):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model NA NU RHO TEXP TREF
MTIME ND
MU1 ALPHA1 MU2 ALPHA2 MU3 ALPHA3 MU4 ALPHA4
MU5 ALPHA5 D1 D2 D3 D4 D5 T

Format D

Hill Foam Material Model (Model=FOAM):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE MID Model NA NU RHO TEXP TREF
MTIME 0
MU1 ALPHA1 BETA1 MU2 ALPHA2 BETA2 MU3 ALPHA3
BETA3 MU4 ALPHA4 BETA4 MU5 ALPHA5 BETA5 T

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE 2 NEOH 1 0.495
LONG 0
5.2 (C10) 10.0 (T)
5.1 (C10) 20.0 (T)
The following examples show the field names instead of actual values to showcase the variation in each temperature-dependent data block depending on the NA and ND values.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE 2 MOONEY 5 NU RHO TEXP TREF
MTIME 1
C10 C01 C20 C11 C02 C30 C21 C12
C03 C40 C31 C22 C13 C04 C50 C41
C32 C23 C14 C05 D1 T
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE 2 MOONEY 3 NU RHO TEXP TREF
MTIME 1
C10 C01 C20 C11 C02 C30 C21 C12
C03 D1 T
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTHE 2 FOAM 2 NU RHO TEXP TREF
MTIME 0
MU1 ALPHA1 BETA1 MU2 ALPHA2 BETA2 T

Definition

Field Contents SI Unit Example
MID Unique material identification number.

No default (Integer > 0)

 
Model Hyperelastic material model type. The input format can vary for each material model. See the format details in the table above.
MOONEY (Default)
Generalized Mooney-Rivlin hyperelastic model
MOOR
Physical Mooney-Rivlin model
RPOLY
Reduced polynomial model
NEOH
Neo-Hookean model
YEOH
Yeoh model
ABOYCE
Arruda-Boyce material model
OGDEN
Ogden material model
FOAM
Hill foam model
blank

(Character)

 
NU Poisson’s ratio.

Default = 0.495 (Real)

 
RHO Material density.

Default = 0.495 (Real)

 
TEXP Coefficient of thermal expansion.

No default (Real)

 
TREF Reference temperature.

No default (Real)

 
NA Order of the distortional strain energy polynomial function if the type of the model is generalized polynomial (MOONEY) or reduced polynomial (RPOLY).

It is also the order of the deviatoric part of the strain energy function of the OGDEN material (Format C).

Default = 2 (0 < Integer ≤ 5)

 
ND Order of the volumetric strain energy polynomial function. 2

No default (Integer ≥ 0)

 
Cpq Material constants related to distortional deformation.

No default (Real)

 
Dp Material constant related to volumetric deformation (Model=BOYCE).

No default (Real > 0.0)

 
C1 Initial shear modulus (Model = ABOYCE). 4

No default (Real)

 
λm Maximum locking stretch.

Used to calculate the value of β (Model = ABOYCE). 4

No default (Real)

 
MUi , ALPHAi Material constants for the Ogden material model (Model=OGDEN) 5 or Hill foam material Model (Model=FOAM). 6  
BETAi Material constants for Hill foam material model (Model=FOAM). 6  
MODULI Continuation line flag for moduli temporal property. 9  
MTIME Material temporal property. This field controls the interpretation of the input material property for viscoelasticity.
INSTANT
The instantaneous material input for viscoelasticity on the MATVE entry.
LONG (Default)
The long-term relaxed material input for viscoelasticity on the MATVE entry.
 
T Temperature at which the defined material properties are specified. The material data and temperature set can be repeated as required to define temperature-dependent material data for hyperelasticity. 1

No default (Real)

 

Comments

  1. MATTHE Bulk Data is an extension of MATHE Bulk Data to allow definition of temperature-dependent hyperelastic materials. Currently direct table input is not supported for MATTHE and only fitted parameters are allowed. Table inputs should be calibrated by curve-fitting first for each temperature and then input on the MATTHE entry.
    • The general rule to specify each data block is to define NA distortional strain energy parameters followed by ND volumetric strain energy parameters, subsequently followed by the temperature for these parameters.
    • Each temperature material data block may extend into more than one line. Therefore, NA and ND should be specified accurately to indicate how many terms are expected.
    • The order of parameters follow the same order as MATHE entry for distortional and bulk parameters, respectively.
    • The different temperature values should be defined in ascending order.
  2. The Generalized polynomial form (MOONEY) of the Hyperelastic material model is written as a combination of the deviatoric and volumetric strain energy of the material. The potential or strain energy density ( W ) is written in polynomial form, as:
    Generalized polynomial form (MOONEY): (1)
    W=N1p+q=1Cpq(ˉI13)p(ˉI23)q+N2p=11Dp(Jelas1)2p
    Where,
    N1
    Order of the distortional strain energy polynomial function (NA).
    N2
    Order of the volumetric strain energy polynomial function (ND). Currently only first order volumetric strain energy functions are supported (ND=1).
    Cpq
    The material constants related to distortional deformation ( Cpq ).
    ˉI1 , ˉI2
    Strain invariants, calculated internally by OptiStruct.
    Dp
    Material constants related to volumetric deformation ( Dp ). These values define the compressibility of the material.
    Jelas
    Elastic volume strain, calculated internally by OptiStruct.
  3. The polynomial form can be used to model the following material types by specifying the corresponding coefficients ( Cpq , Dp ) on the MATHE entry.

    Physical Mooney-Rivlin Material (MOOR):

    N1 = N2 =1 (2)
    W=C10(ˉI13)+C01(ˉI23)+1D1(Jelas1)2

    Reduced Polynomial (RPOLY):

    q=0, N2 =1(3)
    W=N1p=1Cp0(ˉI13)p+1D1(Jelas1)2

    Neo-Hooken Material (NEOH):

    N1= N2 =1, q=0(4)
    W=C10(ˉI13)+1D1(Jelas1)2

    Yeoh Material (YEOH):

    N1 =3 N2 =1, q=0(5)
    W=C10(ˉI13)+1D1(Jelas1)2+C20(ˉI13)2+C30(ˉI13)3

    Some other material models from the Generalized Mooney Rivlin model are:

    Three term Mooney-Rivlin Material: (6)
    W=C10(ˉI13)+C01(ˉI23)+C11(ˉI13)(ˉI23)+1D1(Jelas1)2
    Signiorini Material: (7)
    W=C10(ˉI13)+C01(ˉI23)+C20(ˉI13)2+1D1(Jelas1)2
    Third Order Invariant Material: (8)
    W=C10(ˉI13)+C01(ˉI23)+C11(ˉI13)(ˉI23)+C20(ˉI13)2+1D1(Jelas1)2
    Third Order Deformation Material (James-Green-Simpson): (9)
    W=C10(ˉI13)+C01(ˉI23)+C11(ˉI13)(ˉI23)+C20(ˉI13)2+C30(ˉI13)3+1D1(Jelas1)2
  4. The Arruda-Boyce model (ABOYCE) is defined as: (10)
    W=C15i=1αiβi1(ˉIi13i)+1D1(Jelas1)2

    Where,

    β=1N=1λ2m
    N
    Measure of the limiting locking stretch.
    λm
    Maximum locking stretch.
    D1
    Related to volumetric deformation. It defines the compressibility of the material.
    ˉI1
    First strain invariant, internally calculated by OptiStruct.
    Wherein, ˉI1=I1J23 .
    Jelas
    Elastic volume strain, internally calculated by OptiStruct.
    C1
    Initial shear modulus.

    α1=12;α2=120;α3=111050;α4=197000;α5=519673750

  5. The Ogden Material model (OGDEN) is defined as: (11)
    W=N1i=12μiα2i(ˉλαi1+ˉλαi2+ˉλαi33)+1D1(Jelas1)2
    Where,
    ˉλ1,ˉλ2,ˉλ3
    The three deviatoric stretches (deviatoric stretches are related to principal stretches by ˉλi=J13λi )
    μi
    Defined by the MUi fields
    αi
    Defined by the ALPHAi fields
    N1
    Order of the deviatoric part of the strain energy function defined on the NA field
  6. The Hill Foam Material model (FOAM) is defined as:(12)
    W=N1i=12μiα2i(λαi1+λαi2+λαi33+1βi(Jαiβi1))
    Where,
    λ1,λ2,λ3
    Principle stretches
    μi
    Defined by the MUi fields
    αi
    Defined by the ALPHAi fields
    βi
    Defined by the BETAi fields
    N1
    Order of the strain energy function defined on the NA field.

    Currently, the Hill material model is only supported for explicit analysis.

  7. If Poisson’s ratio and D1 are both defined, then Poisson’s ratio takes precedence.
  8. MATTHE is currently only supported for implicit Large Displacement Nonlinear Analysis.
  9. The MATTHE hyperelastic material supports CTETRA (4, 10), CPENTA (6, 15), and CHEXA (8, 20) element types.
  10. This card is represented as a material in HyperMesh.