MATS1

Bulk Data Entry Specifies stress-dependent and temperature-dependent material properties for use in applications involving nonlinear materials.

This entry is used if a MAT1 entry is specified with the same MID in a nonlinear subcase.

Format A (HR = 1 to 5)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 MID TID TYPE H YF HR LIMIT1    
  TYPSTRN TSC              
  JHCOOK A B N C RSTRT      

Format B.1 (HR = 6: Kinematic Hardening (NLKIN), TYPKIN=PARAM)

The B.# Formats illustrate the format of the MATS1 entry for HR=6. Both NLKIN and NLISO continuation lines can be defined on the same MATS1 entry.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 MID HR
+
NLKIN TYPKIN NKIN
SIGY0 C1 G1 C2 G2 etc. TEMP
etc. etc. etc.

Format B.2 (HR = 6: Kinematic Hardening (NLKIN), TYPKIN=HALFCYCL)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 MID HR
+
NLKIN TYPKIN NKIN
SIG EPS TEMP
etc. etc. etc.

Format B.3 (HR = 6: Isotropic Hardening (NLISO), TYPISO=PARAM)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 MID HR
+
NLISO TYPISO NISO
SIGY0 Q B TEMP
etc. etc. etc. etc.

Format B.4 (HR = 6: Isotropic Hardening (NLISO), TYPISO=TABLE)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 MID HR
+
NLISO TYPISO NISO
SIG EPS TEMP
etc. etc. etc.

Example A (HR = 1, 2, 3)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 17 28 PLASTIC 0.0 1 1 2.+4    

Example (HR = 6): Kinematic Hardening

TYPKIN=PARAM, NLKIN=10, Temperature-independent
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 17 6
+
+ NLKIN PARAM 10
120.0 1000.0 10.0 2000.0 20.0 3000.0 30.0 4000.0
40.0 5000.0 50.0 6000.0 60.0 7000.0 70.0 8000.0
80.0 9000.0 90.0 10000.0 100.0

Example (HR = 6): Combined Hardening

TYPKIN=PARAM, NLKIN=2, Temperature-dependent

TYPISO=PARAM, NLISO=1, Temperature-dependent
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 17 6
+
+ NLKIN PARAM 2
120.0 1000.0 10.0 2000.0 20.0 23.0
100.0 800.0 8.0 1800.0 18.0 27.0
80.0 600.0 6.0 1600.0 16.0 35.0
NLISO PARAM 1
100.0 70 5.0 23.0
120.0 80 6.0 27.0
80.0 60 4.0 35.0

Example (HR = 6): Kinematic Hardening

TYPKIN=HALFCYCL, NLKIN=2, Temperature-dependent
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATS1 17 6
+
+ NLKIN HALFCYCL 2
120.0 0.0 23.0
125.0 0.01 23.0
130.0 0.03 23.0
80.0 0.0 35.0
86.0 0.01 35.0
92.0 0.03 35.0

Definitions

Field Contents SI Unit Example
MID Identification of a MAT1 entry.
Integer
Specifies an identification number for this material.
<String>
Specifies a user-defined string label for this material entry. 1

No default (Integer > 0 or <String>)

 
TID Identification of a TABLES1, TABLEST, TABLEG or TABLEMD entry. If H is given, this field must be blank. 4
Integer
Specifies an identification number for this material.
This is supported for all the table entries listed above.
<String>
Specifies a user-defined string label for this material entry. 1
This is supported only for the TABLES1 entry.
blank

(Integer ≥ 0, <String> (only for TABLES1), or blank)

 
TYPE Material nonlinearity type.
PLASTIC (Default)
Elastoplastic material.
NLELAST
Nonlinear elastic material.
blank
 
H Work hardening slope (slope of stress versus plastic strain) in units of stress. For elastic-perfectly plastic cases, H = 0.0. For more than a single slope in the plastic range, the stress-strain data must be supplied on a TABLES1 or TABLEG entry referenced by TID, and this field must be blank. 3

(Real)

 
YF Yield function criterion, selected by the following value. 11
1
von Mises.
This is supported only with Implicit analysis (nonlinear static and nonlinear transient) and is the default option.
2
Maximum principal stress.
This is supported only with Explicit Dyanamic Analysis and is the default option.

(Integer)

 
HR Hardening Rule, selected by the following value (Integer).
1 (Default)
Isotropic hardening.
2
Kinematic hardening.
3
Mixed hardening with 30% contribution of the Kinematic hardening and 70% contribution of the Isotropic hardening.
4
Johnson-Cook hardening. 12
Supported only for Explicit Dynamic Analysis.
5
Crushable Foam hardening. 13
Supported only for Explicit Dynamic Analysis.
6
Combined hardening. 14 to 23
Adjustable Mixed hardening is selected by choosing (Real) value for HR:
0 < HR < 1
Indicates a mixed combination of Isotropic and Kinematic hardening. The contribution of the Kinematic hardening is HR whereas the contribution of the Isotropic hardening is 1 - HR. 5

(1, 2, 3, 4, 5, 6, or 0.0 < Real < 1.0)

 
LIMIT1 Initial yield point.

The LIMIT1 field can be blank, if the initial yield point value is defined via a referenced TABLES1 or TABLEG entries on the TID field. OptiStruct will error out if LIMIT1 is blank and TID does not reference a TABLES1 or TABLEG entry.

(Real > 0 or blank)

 
TYPSTRN Specifies the type of strain used on the x-axis of the table pointed to by TID. The strain type is selected by one of the following values. 6
0 (Default)
Total strain is used on the x-axis.
1
Plastic strain or volumetric strain is used on the x-axis. 12

(Integer)

 
TSC Tensile stress cutoff. A nonzero, positive value is recommended for realistic behavior. 6

Default = 0.0 (Real ≥ 0)

 
JHCOOK Flag that identifies that the Johnson-Cook hardening method parameters are to follow. For Johnson-Cook hardening, HR=4.

(Integer)

 
A Material yield stress.

No default (Real)

 
B Coefficient to the plastic strain.

Default = 0.0 (Real)

 
N Exponent to the plastic strain.

Default = 1.0 (Real)

 
C Coefficient to the strain rate.

Default = 0.0 (Real)

 
RSTRT Reference strain rate.

Default = 1.0 (Real)

 
NLKIN Continuation line flag indicating that data input for kinematic hardening is to follow. 14 to 23  
TYPKIN Kinematic hardening data input type.
HALFCYCL (Default)
Table input providing stress-strain curve. Total stress from experiment is provided as a column via the SIG fields, while the Equivalent Plastic Strain column is provided via the EPS fields. For NLKIN, the equivalent plastic strain is usually sourced directly from the first cycle of the experiment.
If temperature-dependent data is to be provided, then the final column is TEMP, which is the temperature. This column should be provided in ascending order.
PARAM
Parameter Input which provides the parameters directly. The parameters are SIGY0, Ci, and Gi for kinematic hardening. These parameters can be temperature dependent via the TEMP column, which should be specified in an ascending order.
 
NKIN Number of back stresses for kinematic hardening definition via NLKIN.

Default = 1 (Integer)

 
NLISO Continuation line flag indicating that data input for isotropic hardening is to follow. 14 to 23  
TYPISO Isotropic hardening data input type.
TABLE (Default)
Table input providing isotropic part of yield stress versus the equivalent plastic strain (similar to the curve used for isotropic hardening, HR=1). Isotropic part of the yield stress from experiment is provided as a column via the SIG fields, while the Equivalent Plastic Strain column is provided via the EPS fields. For NLISO, the equivalent plastic strain is usually sourced from cyclic loading experiments.
If temperature-dependent data is to be provided, then the final column is TEMP, which is the temperature. This column should be provided in ascending order.
PARAM
Parameter Input which provides the parameters directly. The parameters are SIGY0, Q, and B for isotropic hardening. These parameters can be temperature dependent via the TEMP column, which should be specified in an ascending order.
 
NISO Number of parameters for isotropic hardening definition via NLISO.

Default = 1 (Integer)

 
SIGY0 Initial yield stress via the PARAM option for NLKIN or NLISO.

No default (Real > 0.0)

 
Ci Parameter(s) Ci of back stress components for NLKIN (PARAM). Up to 10 parameters (C1 to C10) can be specified.

No default (Real > 0.0)

 
Gi Parameter(s) Gi of back stress components for NLKIN (PARAM). Up to 10 parameters (G1 to G10) can be specified.

No default (Real > 0.0)

 
Q Parameter Q for NLISO (PARAM).

No default (Real > 0.0)

 
B Parameter B for NLISO (PARAM).

No default (Real > 0.0)

 
SIG Stress input for data curve input for NLKIN (HALFCYCL) or NLISO (TABLE).

No default (Real > 0.0)

 
EPS Equivalent plastic strain input for data curve input for NLKIN (HALFCYCL) or NLISO (TABLE).

No default (Real > 0.0)

 
TEMP Temperature for temperature-dependent data specification for NLKIN or NLISO.

No default (Real)

 

Comments

  1. String based labels allow for easier visual identification, including when being referenced by other entries. (example, the MID field of properties). For more details, refer to String Label Based Input File.
  2. For nonlinear elastic material, the stress-strain data given in the TABLES1 or TABLEG entry will be used to determine the stress for a given value of strain. The values H, YF, HR, and LIMIT1 will not be used in this case. Nonlinear elastic material is only available in EXPDYN subcases.
  3. For elastoplastic materials, the elastic stress-strain matrix is computed from a MAT1 entry, and the isotropic plasticity theory is used to perform the plastic analysis. In this case, either the table identification TID or the work hardening slope H may be specified, but not both. If the TID is omitted, the work hardening slope H must be specified, unless the material is perfectly plastic. The plasticity modulus ( H ) is related to the tangential modulus ( E T ) by:
    (1)
    H = E T 1 E T E
    Where, E is the elastic modulus and E T = d Y / d ε is the slope of the uniaxial stress-strain curve in the plastic region.


    Figure 1.
  4. If TID is given, TABLES1 or TABLEG entries (Xi,Yi) of stress-strain data ( ε x,Yx) must conform to the following rules:

    If TYPE=PLASTIC, the curve must be defined in the first quadrant. The data points must be in ascending order. If the table is defined in terms of total strain (TYPSTRN=0), the first point must be at the origin (X1=0, Y1=0) and the second point (X2, Y2) must be at the initial yield point (Y1) specified on the MATS1 entry. The slope of the line joining the origin to the yield stress must be equal to the value of E. If the table is defined in terms of plastic strain (TYPSTRN=1), the first point (X1, Y1), corresponding to yield point (Y1), must be at X1=0. TID may reference a TABLEST entry. In this case, the above rules apply to all TABLES1 tables pointed to by TABLEST.

    If TYPE=NLELAST, the full stress-strain curve may be defined in the first and third quadrants to accommodate different uniaxial compression data. If the curve is defined only in the first quadrant, then the curve must start at the origin (X1=0.0, Y1=0.0).

    For analysis where small deformations are assumed, there should be little or no difference between the true stress-strain curve and the engineering stress-strain curve, so either of them may be used in the TABLES1 definition. For analyses where small deformations are not assumed, the true stress-strain curve should be used.

    If the deformations go past the values defined in the table, the curve is extrapolated linearly.

  5. Kinematic hardening and Mixed hardening are supported only for solids.
  6. The conversion of the relation stress versus total strain (TYPSTRN=0) into stress versus plastic strain (TYPSTRN=1) is illustrated below. This is clearly different than simply shifting the entire table along the epsilon-axis.


    Figure 2.
  7. The temperature-dependence of the MATS1 material is defined by referencing a TABLEST entry via the TID field.
  8. Large strain elasto-plasticity can be activated using MATS1 (TYPE=PLASTIC) in conjunction with PARAM, LGDISP,1.
  9. MATS1 is not supported in conjunction with second order shell elements (CTRIA6 and CQUAD8).
  10. MATS1 is supported for CROD, CONROD, CBAR and CBEAM elements in the axial translational direction only. The behaviors in other directions remain elastic.

    The torsional deformation of CROD/CONROD elements or the shear, bending and torsional deformations of CBAR/CBEAM elements remain elastic.

  11. If Johnson-Cook is selected (HR=4), use the following formulations:(2)
    σ = ( a + b ε p n ) ( 1 + c ln ( ε ˙ ε ˙ 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0ZaaeWaaeaacaWGHbGaey4kaSIaamOyaiabew7aLnaaDaaaleaa caWGWbaabaGaamOBaaaaaOGaayjkaiaawMcaamaabmaabaGaaGymai abgUcaRiaadogaciGGSbGaaiOBamaabmaabaWaaSaaaeaacuaH1oqz gaGaaaqaaiqbew7aLzaacaWaaSbaaSqaaiaaicdaaeqaaaaaaOGaay jkaiaawMcaaaGaayjkaiaawMcaaaaa@4C99@
    (3)
    σ ¯ = ( A + B ( ε ¯ p l ) n ) ( 1 + C ln ( ε ¯ ˙ p l ε ˙ 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae bacqGH9aqpdaqadaqaaiaadgeacqGHRaWkcaWGcbWaaeWaaeaacuaH 1oqzgaqeamaaCaaaleqabaGaamiCaiaadYgaaaaakiaawIcacaGLPa aadaahaaWcbeqaaiaad6gaaaaakiaawIcacaGLPaaadaqadaqaaiaa igdacqGHRaWkcaWGdbGaciiBaiaac6gadaqadaqaamaalaaabaGafq yTduMbaeHbaiaadaahaaWcbeqaaiaadchacaWGSbaaaaGcbaGafqyT duMbaiaadaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaaaaa@514E@
    Johnson-Cook strain rate dependence assumes that,(4)
    σ ¯ = σ 0 ( ε ¯ p l , θ ) R ( ε ¯ ˙ p l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae bacqGH9aqpcqaHdpWCdaahaaWcbeqaaiaaicdaaaGcdaqadaqaaiqb ew7aLzaaraWaaWbaaSqabeaacaWGWbGaamiBaaaakiaacYcacqaH4o qCaiaawIcacaGLPaaacaWGsbWaaeWaaeaacuaH1oqzgaqegaGaamaa CaaaleqabaGaamiCaiaadYgaaaaakiaawIcacaGLPaaaaaa@499B@
    and (5)
    ε ¯ ˙ p l = ε ˙ 0 exp ( 1 C ( R 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae HbaiaadaahaaWcbeqaaiaadchacaWGSbaaaOGaeyypa0JafqyTduMb aiaadaWgaaWcbaGaaGimaaqabaGcciGGLbGaaiiEaiaacchadaqada qaamaalaaabaGaaGymaaqaaiaadoeaaaWaaeWaaeaacaWGsbGaeyOe I0IaaGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@4780@

    for σ ¯ σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae bacqGHLjYScqaHdpWCdaahaaWcbeqaaiaaicdaaaaaaa@3C42@

    Where,
    σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae baaaa@37D2@
    Yield stress for non-zero strain rate.
    ε ¯ ˙ p l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae HbaiaadaahaaWcbeqaaiaadchacaWGSbaaaaaa@39D1@
    Equivalent plastic strain rate.
    ε ˙ 0 and C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGdbaaaa@399F@
    Are material parameters measured at or below the transition temperature θ t r a n s i t i o n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadshacaWGYbGaamyyaiaad6gacaWGZbGaamyAaiaadsha caWGPbGaam4Baiaad6gaaeqaaaaa@4156@ .
    σ 0 ( ε ¯ p l , θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaW baaSqabeaacaaIWaaaaOWaaeWaaeaacuaH1oqzgaqeamaaCaaaleqa baGaamiCaiaadYgaaaGccaGGSaGaeqiUdehacaGLOaGaayzkaaaaaa@4076@
    Static yield stress.
    R ( ε ¯ ˙ p l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGafqyTduMbaeHbaiaadaahaaWcbeqaaiaadchacaWGSbaaaaGc caGLOaGaayzkaaaaaa@3C3B@
    Ratio of the yield stress at nonzero strain rate to the static yield stress (so that R ( ε ˙ 0 ) = 1.0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabm aabaGafqyTduMbaiaadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGL PaaacqGH9aqpcaaIXaGaaiOlaiaaicdaaaa@3E24@ ).

    Johnson-Cook hardening is supported only with Explicit Dynamic Analysis.

  12. When Crushable Foam is selected (HR=5), only maximum principal stress as yield criterion (YF=2) is used, and a table TID must be given.

    The default for TSC (tensile stress cutoff) is zero, unless the user specifies a value. TSC is defined as a positive stress value which indicates the yield stress of crushable foam under tensile loading.

    The yield stress of crushable foam under compression loading can be given by a rate independent table (TABLES1).

    Where,
    x
    Values in the table are the volumetric strain (all positive values indicate the volume is compressed). The volumetric strain is defined as γ = 1 V V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey ypa0JaaGymaiabgkHiTmaalaaabaGaamOvaaqaaiaadAfadaWgaaWc baGaaGimaaqabaaaaaaa@3CF7@ .
    y
    Values in the table are the compression yield stress (all positive values).
    Note: Since crushable foam is based on volumetric strain-based definition, TYPSTRN = 0 (default) is invalid and TYPSTRN = 1 must be specified.

    First entry in the TABLES1 entry will be x=0, y=y_0, (the initial compressive yield stress). All xi should be positive and in increasing order.

    For crushable foam, in place of the equivalent plastic strain in H3D file, the integrated volumetric strain (natural logarithm of the relative volume I n ( V V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam ysaiaad6gadaqadaqaamaalaaabaGaamOvaaqaaiaadAfadaWgaaWc baGaaGimaaqabaaaaaGccaGLOaGaayzkaaaaaa@3CE3@ is output.

    Crushable Foam hardening is supported only with Explicit Dynamic Analysis.

  13. When TID refers to TABLEMD.
    For rate-independent problems:
    HR
    X1
    1, 2 or 3
    Plastic strain/Total strain
    5
    Volumetric strain
    For rate-dependent problems:
    HR
    X1
    1, 2 or 3
    Total strain rate
    5
    Volumetric strain rate
  14. Combined hardening can be used by specifying hardening, HR=6. Combined hardening is currently supported only for solid elements and for both SMDISP/LGDISP NLSTAT and NLTRAN analysis.
  15. For combined hardening, at least one type of nonlinear hardening should be defined. Both NLKIN and NLSIO support either parameter or stress-strain curve input. They can be combined flexibly, for example NLKIN with parameter input (PARAM) and NLISO with stress-strain curve input (TABLE).
  16. For NLKIN hardening, the number of back stresses can be specified from 1 up to 10.
  17. After the continuation line with NLKIN or NLISO, you can input the data block with an unlimited number of continuation lines.
  18. Using the HALFCYCL format for NLKIN, you can provide a stress-strain curve for curve fitting. The stress (column SIG) is the total stress from experiment. The strain (column EPS) should be the equivalent plastic strain. In the temperature dependent case, multiple curves can be provided one after each other. The last column temperature (TEMP) should be in ascending order.
  19. Using the PARAM input format for NLKIN, you can provide the parameters directly. The parameters can be temperature dependent, with TEMP specified in ascending order. If the number of back stresses is equal or greater than 4, then multiple continuation lines will be used to define the complete set of parameters (C1-C10, G1-G10), check the example above.
  20. For parameter fitting using options TABLE or HALFCYCL, the Levenberg-Marquardt method is used to determine the optimal parameters for both NLKIN and NLISO. The parameters are printed in the .out file for each temperature.
  21. If both NLKIN and NLISO use PARAM format, then the initial yield stress SIGY0 should be the same for the same temperature.
  22. The units of the parameter C1-C10 should be the same as the Young’s modulus on the MAT1 entry.
  23. For more information regarding Combined Hardening (HR=6), refer to Combined Hardening of von Mises Plasticity in the User Guide.