/LOAD/CENTRI
Block Format Keyword Apply a centrifugal force on a set of nodes according a body rotational velocity around the defined direction.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/LOAD/CENTRI/load_ID/unit_ID  
load_title  
fct_ID_{T}  Dir  frame_ID  sens_ID  grnod_ID  Ivar  Ascale_{x}  Fscale_{y} 
Definitions
Field  Contents  SI Unit Example 

load_ID  Load
identifier (Integer, maximum 10 digits) 

unit_ID  Unit Identifier (Integer, maximum 10 digits) 

load_title  Load title (Character, maximum 100 characters) 

fct_ID_{T}  Time function identifier,
giving the rotational velocity
$\omega $
versus time. (Integer) 

Dir  Direction of rotation
(input XX, YY or ZZ) (Text) 

frame_ID  Frame identifier
(Integer) 

sens_ID  Sensor
identifier. (Integer) 

grnod_ID  Node group to which the
load is applied. (Integer) 

Ivar  Flag to disregard
variation of velocity with respect to time, for the calculation of
the force.
(Integer) 

Ascale_{x}  Abscissa scale
factor. Default = 1.0 (Real) 
$\left[\text{s}\right]$ 
Fscale_{y}  Ordinate scale
factor. Default = 1.0 (Real) 
$\left[\frac{\text{rad}}{\text{s}}\right]$ 
Comments
 A force is computed corresponding to a body rotational velocity around the direction Dir of the global reference system if frame_ID = 0, or the reference system defined by the frame if frame_ID ≠ 0.
 This option is not a kinematic condition (velocity of the nodes is not specified).
 If frame_ID =
0, the force applied to the node of mass
$m$
, at location
$M$
is computed as:
(1) $$F=m\left(\frac{d\omega}{dt}\wedge OM+\omega \wedge \omega \wedge OM\right)$$If Ivar = 1:
$\frac{d\omega}{dt}\wedge OM$ is not taken into account.(2) $$F=m\left(\omega \wedge \omega \wedge OM\right)$$  If
frame_ID ≠ 0, the force applied to a node is
computed as:
(3) $$F={f}_{r}+{f}_{e}+{f}_{c}$$Driving force:(4) $${f}_{e}=m\left(\gamma (A)+\left(\frac{d{\Omega}_{(R\text{'}/R)}}{dt}\right)\wedge AM+{\Omega}_{(R\text{'}/R)}\wedge \left({\Omega}_{(R\text{'}/R)}\wedge AM\right)\right)$$Coriolis force:(5) $${f}_{c}=m\left(2{\Omega}_{(R\text{'}/R)}\wedge v{(M)}_{/R\text{'}}\right)$$Relative force:(6) $${f}_{r}=m\left(\frac{d\omega}{dt}\wedge AM+\omega \wedge \omega \wedge AM\right)$$If Ivar = 1:
$\frac{d\omega}{dt}\wedge AM$ is not taken into account in relative force.
(7) $${f}_{r}=m\left(\omega \wedge \omega \wedge AM\right)$$Where, R
 Global reference system
 R'
 Reference system defined by the frame
 A
 Origin of the frame
 M
 A point of the defined group of node
 ${\Omega}_{(R\text{'}/R)}$
 Rotational velocity of the frame with respect to the global reference system
 $\omega $
 Rotational velocity defined by the time function