/DFS/LASER
Block Format Keyword Enable to model laser impact taking into account lasermatter interaction. 1
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/DFS/LASER/laser_ID/unit_ID  
S_{LAS}  fct_ID_{LAS}  S_{TAR}  fct_ID_{TAR}  
H_{n}  VC_{p}  K_{0}  R_{d}  K_{S}  
N_{p}  N_{c}  
IEL_{1}  IEL_{2}  IEL_{3}  IEL_{4}  IEL_{5}  IEL_{6}  IEL_{7}  IEL_{8}  IEL_{9}  IEL_{10} 
IEL_{11}  etc  IEL_{Np} 
Definitions
Field  Contents  SI Unit Example 

laser_ID  Laser line
identifier. (Integer, maximum 10 digits) 

unit_ID  Unit Identifier (Integer, maximum 10 digits) 

S_{LAS}  Laser intensity scale
factor. (Real) 

fct_ID_{LAS}  Laser intensity time
function number. (Real) 

S_{TAR}  Target absorption scale
factor. (Real) 

fct_ID_{TAR}  Target absorption
temperature function number. (Integer) 
$\left[\text{K}\right]$ 
H_{n}  Plasma parameter. ${H}_{n}=\frac{h\cdot v}{{k}_{B}}$ Where,
(Real) 
$\left[\text{K}\right]$ 
VC_{p}  Enthalpy of
vaporization. (Real) 
$\left[\frac{\text{J}}{\text{kg}\cdot \text{K}}\right]$ 
K_{0}  Inverse bremsstrahlung
coefficient K_{0}. 6 (Real) 
$\left[{\text{m}}^{5}\right]$ 
R_{d}  Inverse bremsstrahlung
coefficient
$\frac{{R}_{d}}{{k}_{B}}$
. 6 (Real) 
$\left[\text{K}\right]$ 
K_{S}  Compliment absorption in
vapor. 5 (Real) 
$\left[\frac{{\text{m}}^{5}}{{\text{mole}}^{2}}\right]$ 
N_{p}  Number of plasma elements
between laser and target. (Integer) 

N_{c}  Target element number.
1 (Integer) 

IEL_{i}  List of plasma elements
(i=1,..., N_{p}).
3 (Integer) 
Comments
 Lasermatter interaction requires material laws enabling different phases: solid, liquid, and gas. It also needs to have a correct behavior with high pressure (several megabars) and high temperatures (more than 10000K). /MAT/LAW26 (SESAM) must also be used.
 This option is available only in 2D analysis.
 Plasma elements must be entered in the order from laser to target.
 It is assumed the laser beam is perpendicular to the target.
 ${K}_{S}=67000{\left(\frac{\rho}{{w}_{A}}\right)}^{2}$ is taken from K. Daree's plasma ignition model.

(1) $$I={I}_{0}{\displaystyle {\sum}_{{n}_{laser}}^{{n}_{target}}{I}_{absorbed}}$$(2) $${I}_{absorbed}=\left(1{e}^{K\text{\Delta}x}\right)I$$(3) $$K=\frac{4}{3}\sqrt{\frac{2\pi}{3{k}_{B}T}}\frac{{n}_{e}{n}_{i}{Z}^{2}{e}_{6}}{hc{m}_{e}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{1ex}{$2$}\right.}{v}^{3}}\left(1{e}^{\frac{hv}{{k}_{B}T}}\right)gff={K}_{0}{\left(\frac{{R}_{d}}{hv}\right)}^{3}{\left(\frac{{R}_{d}}{{k}_{B}T}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{1ex}{$2$}\right.}\left({n}_{i}^{2}{Z}^{3}\right)\left(1{e}^{\frac{hv}{{k}_{B}T}}\right)gff$$Usually, ${K}_{0}=9.468\times {10}^{4}{\mathrm{m}}^{5}$ and $\frac{{R}_{d}}{k}=157750\mathrm{K}$ .