LAW25 (Tsai-WU and CRASURV)

LAW25 is the most commonly used composite material in Radioss. It can be used with shell and solid elements. The two formulations available in LAW25 are the Tsai-Wu and CRASURV formulations.

Elastic Phase

In the elastic phase, Young's modulus (3 parameters), shear modulus (3 parameters) and one parameter for Poisson ratio are required to describe the orthotropic material.(1)
[ ε 11 ε 22 ε 33 γ 12 γ 23 γ 31 ] = [ 1 E 11 ν 12 E 11 ν 12 E 33 0 0 0 1 E 22 ν 12 E 22 0 0 0 1 E 33 0 0 0 1 2 G 12 0 0 s y m m . 1 2 G 23 0 1 2 G 31 ] [ σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 ]

Tsai-Wu Yield Criteria for Iform=0 and =1

The Tsai-Wu yield surface in LAW25 is defined with 6 coefficient:
Iform=0: Tsai-Wu ( F ( σ ) F ( W p * , ε ˙ ) )
Iform=1: CRASURV ( F ( W p * , ε ˙ , σ ) 1 )
F ( σ ) = F 1 σ 1 + F 2 σ 2 + F 11 σ 1 2 + F 22 σ 2 2 + F 44 σ 12 2 + 2 F 12 σ 1 σ 2
F ( W p * , ε ˙ , σ ) = F 1 ( W p * , ε ˙ ) σ 1 + F 2 ( W p * , ε ˙ ) σ 2 + F 11 ( W p * , ε ˙ ) σ 1 2 + F 22 ( W p * , ε ˙ ) σ 2 2 + F 44 ( W p * , ε ˙ ) σ 12 2 + 2 F 12 ( W p * , ε ˙ ) σ 1 σ 2
To check if material in yield, in Tsai-Wu (Iform=0) F ( σ ) will be compared with F ( W p * , ε ˙ ) at each stress state and in CRASURV (Iform=1) F ( W p * , ε ˙ ) will be simply compared with 1 at each stress state.
These 6 coefficients could be determined with yield stress from these tests:
  • Tensile/compression tests

    Longitudinal tensile/compression tests (in direction 1 which is fiber direction):

    Iform = 0: Tsai-Wu ( F ( σ ) F ( W p * , ε ˙ ) )
    Iform = 1: CRASURV ( F ( W p * , ε ˙ , σ ) 1 )
    F 1 = 1 σ 1 y c + 1 σ 1 y t
    F 11 = 1 σ 1 y c σ 1 y t
    F ( W p * , ε ˙ ) = ( 1 + b ( W p * ) n ) ( 1 + c ln ( ε ˙ ε ˙ 0 ) )
    Here, W p * = W p W p r e f
    F 1 ( W p * ε ˙ ) = 1 σ 1 y c ( W p * ε ˙ ) + 1 σ 1 y t ( W p * ε ˙ )

    F 11 ( W p * ε ˙ ) = 1 σ 1 y c ( W p * ε ˙ ) σ 1 y t ( W p * ε ˙ )

    In tension:

    σ 1 y t ( W p * ε ˙ ) = σ 1 y t ( 1 + b 1 t ( W p * ) n 1 t ) ( 1 + c 1 t ln ( ε ˙ ε ˙ 0 ) )

    In compression:

    σ 1 y c ( W p * ε ˙ ) = σ 1 y c ( 1 + b 1 c ( W p * ) n 1 c ) ( 1 + c 1 c ln ( ε ˙ ε ˙ 0 ) )

    Here W p * = W p W p r e f

    Transverse tensile/compression tests (in direction 2)

    Iform = 0: Tsai-Wu ( F ( σ ) F ( W p * , ε ˙ ) )
    Iform = 1: CRASURV ( F ( W p * , ε ˙ , σ ) 1 )
    F 2 = 1 σ 2 y c + 1 σ 2 y t
    F 22 = 1 σ 2 y c σ 2 y t
    Here, W p * = W p W p r e f
    F 2 ( W p * ε ˙ ) = 1 σ 2 y c ( W p * ε ˙ ) + 1 σ 2 y t ( W p * ε ˙ )

    F 22 ( W p * ε ˙ ) = 1 σ 2 y c ( W p * ε ˙ ) σ 2 y t ( W p * ε ˙ )

    In tension:

    σ 2 y t ( W p * ε ˙ ) = σ 2 y t ( 1 + b 2 t ( W p * ) n 2 t ) ( 1 + c 2 t ln ( ε ˙ ε ˙ 0 ) )

    In compression:

    σ 2 y c ( W p * ε ˙ ) = σ 2 y c ( 1 + b 2 c ( W p * ) n 2 c ) ( 1 + c 2 c ln ( ε ˙ ε ˙ 0 ) )

    Here W p * = W p W p r e f

  • Shear tests

    Shear in plane 1-2

    Iform = 0: Tsai-Wu ( F ( σ ) F ( W p * , ε ˙ ) )
    Iform = 1: CRASURV ( F ( W p * , ε ˙ , σ ) 1 )
    F 44 = 1 σ 12 y c σ 12 y t
    σ 12 y t and σ 12 y c can result from the sample tests:


    F ( W p * , ε ˙ ) = ( 1 + b ( W p * ) n ) ( 1 + c ln ( ε ˙ ε ˙ 0 ) )
    Here, W p * = W p W p r e f
    F 44 ( W p * , ε ˙ ) = 1 σ 12 y ( W p * , ε ˙ ) σ 12 y ( W p * , ε ˙ )
    In shear:
    σ 12 y ( W p * ε ˙ ) = σ 12 y ( 1 + b 12 ( W p * ) n 12 ) ( 1 + c 12 ln ( ε ˙ ε ˙ 0 ) )
    σ 12 y can result from the sample test:


  • Interaction coefficients
    Iform = 0: Tsai-Wu ( F ( σ ) F ( W p * , ε ˙ ) )
    Iform = 1: CRASURV ( F ( W p * , ε ˙ , σ ) 1 )
    F 12 = α 2 F 11 F 22
    The default reduction factor, α = 1 , is typically used.
    F ( W p * , ε ˙ ) = ( 1 + b ( W p * ) n ) ( 1 + c ln ( ε ˙ ε ˙ 0 ) )
    Here, W p * = W p W p r e f
    F 12 ( W p * , ε ˙ ) = α 2 F 11 ( W p * , ε ˙ ) F 22 ( W p * , ε ˙ )
    The default reduction factor, α = 1 , is typically used.
Note that the relative plastic work W p * is used in Tsai-Wu to calculate the yield surface; whereas in CRASURV, the relative plastic work is used to calculate the yield stress.
Iform = 0: Tsai-Wu ( F ( σ ) F ( W p * , ε ˙ ) )
Iform = 1: CRASURV ( F ( W p * , ε ˙ , σ ) 1 )
F ( σ ) F ( W p * , ε ˙ )
With F ( W p * , ε ˙ ) = ( 1 + b ( W p * ) n ) ( 1 + c ln ( ε ˙ ε ˙ 0 ) )
Here W p * = W p W p r e f
F ( W p * , ε ˙ , σ ) 1
Material in elastic phase, if F ( σ ) F ( W p * , ε ˙ )
Material in nonlinear phase, if F ( σ ) > F ( W p * , ε ˙ )


The yield stress limit F ( W p * , ε ˙ ) is in range of 1 and f max
Material in elastic phase, if F ( W p * , ε ˙ , σ ) 1
Material in nonlinear phase, if F ( W p * , ε ˙ , σ ) > 1


In LAW25 (Tsai-Wu and CRASURV) damage is a function of the total strain and the maximum damage factor.

If the total strain ε > ε t or out of plane strain γ i n i < γ < γ max , then the material is softened using the following method:(2)
σ r e d u c e = σ ( 1 d i )
with i=1,2,3
Where, di is the damage factor and is defined as:(3)
d i = min ( ε i ε t i ε i ε m i ε m i ε t i ,   d max )
with i=1,2(4)
d 3 = min ( γ γ i n i γ max γ i n i γ max γ , d 3 max )
in direction 3 (delamination)
  • If the total strain is between ε t < ε < ε f , the material begins to soften, but this damage is reversible. Once ε > ε f , then the damage is irreversible and if ε ε m , then stress in material is reduced to 0.
  • Damage could be in elastic phase or in plastic phase. It depends on which phase ε t and ε f are defined in.
  • Element deletion is controlled by Ioff. Select a different Ioff option to control the criteria of element deletion. For additional information, refer to Ioff in LAW25 in the Reference Guide.