Ityp = 2

Block Format Keyword This law enables to model a material inlet/outlet by directly imposing its state.


law11_ityp0
Figure 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID
mat_title
ρi ρ0            
Ityp   Psh FscaleT        
Ityp = 2 - General Inlet/Outlet
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Blank Format
fct_IDρ                  
fct_IDp   P0            
fct_IDE   E0            
Blank Format
Blank Format
fct_IDT fct_IDQ                

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρi Initial density 3

(Real)

[kgm3]
ρ0 Reference density used in E.O.S (equation of state)

Default ρ0=ρi (Real)

[kgm3]
Ityp Boundary condition type 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

 
Psh Pressure shift 2

(Real)

[Pa]
Fscalev Time scale factor 3

(Real)

[s]
fct_ID ρ Function fρ(t) identifier for boundary density 3
= 0
ρ(t)=ρi
> 0
ρ(t)=ρifρ(t)

(Integer)

 
fct_IDp Function fP(t) identifier for boundary pressure 3
= 0
P(t)=P0
> 0
P(t)=P0fP(t)

(Integer)

 
P0 Initial pressure 3

(Real)

[Pa]
fct_IDE Function fE(t) identifier for boundary density 3
= 0
E(t)=E0
> 0
E(t)=E0fE(t)

(Integer)

 
E0 Initial energy 3 6

(Real)

[Pa]
fct_IDT Function fT(t) identifier for boundary temperature 3 4
= 0
T = Tadjacent
= n
T=T0fT(t)

(Integer)

 
fct_IDQ Function fQ(t) identifier for boundary heat flux 3 4
= 0
No imposed flux
= n
Q=fQ(t)

(Integer)

 

Comments

  1. Provided state is directly imposed to inlet boundary elements. This leads to the following inlet state:
    (1)
    ρin=ρifρ(t)Pin=P0fP(t)Pin=P0fP(t)Ein=(ρe)in=E0fE(t)

    With this formulation, you may impose velocity on boundary nodes to be consistent with physical inlet velocity (/IMPVEL). /MAT/LAW11 - ITYP=0 and 1, are based on material state from stagnation point, where you do not need to imposed an inlet velocity.

  2. The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using Psh=P(t=0), the output pressure will be ΔP MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc faaaa@37E5@ , with an initial value of 0.0.
  3. If no function is defined, then related quantity (Pstagnation,ρstagnation,T,orQ) remains constant and set to its initial value. However, all input quantities (Pstagnation,ρstagnation,T,andQ) can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f (Fscalet * t) instead of f(t).
  4. With thermal modeling, all thermal data ( T0,ρ0CP , ...) can be defined with /HEAT/MAT.
  5. It is not possible to use this boundary material law with multi-material ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).
  6. Specific volume energy E is defined as E=EintV MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamOvaaaaaaa@3C8D@ , where Eint MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaaa@39C6@ is the internal energy. It can be output using /TH/BRIC.

    Specific mass energy e is defined as e=Eintm MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiabg2da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcbaGaamyBaaaaaaa@3CC4@ . This leads to ρe=E . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.