Iform = 4

Block Format Keyword This boundary can simulate gas inlet conditions for multi-material ALE laws (formulation: Iform = 0, 1, 10, or 11).

The boundary sub-material states is calculated from a state at a stagnation point which is provided by the user. When using this feature, it is no longer necessary to use imposed velocity (/IMPVEL) where the velocity is computed by numerical scheme.

Description

The user provides stagnation state α s t a g n a t i o n = α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHXoqydaWgaaWcba GaaGimaaqabaaaaa@4632@ , ρ s t a g n a t i o n = ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcba GaaGimaaqabaaaaa@4674@ and E s t a g n a t i o n = E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0JaamyramaaBaaaleaaca aIWaaabeaaaaa@4488@ which corresponds to state for which v=0. From the Ideal Gas EOS: (1)
P 0 = C 0 + ( 1 + μ ) ( γ 1 ) E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaaIWaaa beaakiabgUcaRiaacIcacaaIXaGaey4kaSIaeqiVd0Maaiykaiabgw SixlaacIcacqaHZoWzcqGHsislcaaIXaGaaiykaiabgwSixlaadwea daWgaaWcbaGaaGimaaqabaaaaa@4C65@

Where, C 4 = γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaisdaaeqaaOGaeyypa0Jaeq4SdCMaeyOeI0IaaGymaaaa @3D79@ . It can be deduced that P s t a g n a t i o n = C 0 + C 4 E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0Jaam4qamaaBaaaleaaca aIWaaabeaakiabgUcaRiaadoeadaWgaaWcbaGaaGinaaqabaGccqGH flY1caWGfbWaaSbaaSqaaiaaicdaaeqaaaaa@4B33@ .

At each cycle, Radioss computes gas inlet state ρ i n , E i n , P i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyAaiaad6gaaeqaaOGaaiilaiaadweadaWgaaWcbaGa amyAaiaad6gaaeqaaOGaaiilaiaadcfadaWgaaWcbaGaamyAaiaad6 gaaeqaaaaa@4262@ such as Bernoulli theory is satisfied 1 using velocity at inlet face.

law51_iform4
Figure 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW51/mat_ID/unit_ID
mat_title
Blank Format
Iform                  
#Global Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Scaletime PEXT          
#Material1 Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 1 ρ 0 mat _ 1 E 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_IDα1 fct_ID ρ 1 fct_IDE1  
C 1 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@     C 4 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@  
  C 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          
#Material2 Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 2 ρ 0 mat _ 2 E 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_IDα2 fct_ID ρ 2 fct_IDE2  
C 1 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@     C 4 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@  
  C 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          
#Material3 Parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 3 ρ 0 mat _ 3 E 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_IDα3 fct_ID ρ 3 fct_IDE3  
C 1 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@     C 4 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@  
  C 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Interger, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
Iform Formulation flag.
= 4
Gas Inlet (computed from data at stagnation point).

(Integer)

 
Scaletime Abscissa scale factor for input functions. 2

Default = 1 (Real)

 
PEXT External (ambient) pressure. 3

(Real)

[ Pa ]
α 0 mat _ i Initial volumetric fraction. 4

(Real)

 
ρ 0 mat _ i Initial density at stagnation point. 1

(Real)

[ kg m 3 ]
E 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ Initial energy at stagnation point. 5

(Real)

[ J m 3 ]
fct_IDαi (Optional) Volumetric fraction scaling function. f α i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOzamaaBa aaleaacqaHXoqydaWgaaadbaGaamyAaaqabaaaleqaaOWaaeWaaeaa caWG0baacaGLOaGaayzkaaaaaa@3C60@ identifier. 6
= 0
α m a t i ( t ) = α 0 m a t i
> 0
α m a t i ( t ) = α 0 m a t i f α i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaW baaSqabeaacaWGTbGaamyyaiaadshadaWgaaadbaGaamyAaaqabaaa aOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaeqySde2aa0 baaSqaaiaaicdaaeaacaWGTbGaamyyaiaadshadaWgaaadbaGaamyA aaqabaaaaOGaciOzamaaBaaaleaacqaHXoqydaWgaaadbaGaamyAaa qabaaaleqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@4C26@

(Integer)

 
fct_ID ρ i (Optional) Density fraction scaling function. f ρ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacqaHbpGCpaWaaSbaaWqaa8qacaWG PbaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaaaaa@3D82@ identifier
= 0
ρ m a t i ( t ) = ρ 0 m a t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeg8aY9aadaahaaWcbeqaa8qacaWGTbGaamyyaiaadshapaWa aSbaaWqaa8qacaWGPbaapaqabaaaaOWdbmaabmaapaqaa8qacaWG0b aacaGLOaGaayzkaaGaeyypa0JaeqyWdi3damaaDaaaleaapeGaaGim aaWdaeaapeGaamyBaiaadggacaWG0bWdamaaBaaameaapeGaamyAaa Wdaeqaaaaaaaa@4765@
> 0
ρ m a t i ( t ) = ρ 0 m a t i . f ρ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeg8aY9aadaahaaWcbeqaa8qacaWGTbGaamyyaiaadshapaWa aSbaaWqaa8qacaWGPbaapaqabaaaaOWdbmaabmaapaqaa8qacaWG0b aacaGLOaGaayzkaaGaeyypa0JaeqyWdi3damaaDaaaleaapeGaaGim aaWdaeaapeGaamyBaiaadggacaWG0bWdamaaBaaameaapeGaamyAaa Wdaeqaaaaak8qacaGGUaGaaeOza8aadaWgaaWcbaWdbiabeg8aY9aa daWgaaadbaWdbiaadMgaa8aabeaaaSqabaGcpeWaaeWaa8aabaWdbi aadshaaiaawIcacaGLPaaaaaa@4F34@

(Integer)

 
fct_IDEi (Optional) Energy fraction scaling function. f E i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOzamaaBa aaleaacaWGfbWaaSbaaWqaaiaadMgaaeqaaaWcbeaakmaabmaabaGa amiDaaGaayjkaiaawMcaaaaa@3B8B@ identifier.
= 0
E m a t i ( t ) = E 0 m a t i
> 0
E m a t i ( t ) = E 0 m a t i f E i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaiaadggacaWG0bWaaSbaaWqaaiaadMgaaeqaaaaa kmaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaadweadaqhaa WcbaGaaGimaaqaaiaad2gacaWGHbGaamiDamaaBaaameaacaWGPbaa beaaaaGcciGGMbWaaSbaaSqaaiaadweadaWgaaadbaGaamyAaaqaba aaleqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@49A7@

(Integer)

 
C 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ Coefficient for perfect gas EOS. 5

(Real)

[ Pa ]
C 4 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ Perfect gas ( γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0IaaGymaaaa@3945@ ) constant. 5

(Real)

 
C 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ Coefficient for perfect gas EOS. 5

(Real)

[ Pa ]

Comments

  1. The provided stagnation point ρ stagnation , P stagnation is used to compute gas inlet state. Bernoulli theorem is applied:
    (2)
    P stagnation = P in + ρ in v in 2 2
    This leads to gas inlet state:(3)
    ρ in = ρ stagnation [ 1 γ 1 2 γ ρ stagnation P stagnation ( 1 + C d ) v in 2 ] 1 γ 1
    (4)
    P i n = P s t a g n a t i o n ( ρ i n ρ s t a g n a t i o n ) γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbGaamOBaaqabaGccqGH9aqpcaWGqbWaaSbaaSqaaiaa dohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWGPbGaam 4Baiaad6gaaeqaaOWaaeWaaeaadaWcaaqaaiabeg8aYnaaBaaaleaa caWGPbGaamOBaaqabaaakeaacqaHbpGCdaWgaaWcbaGaam4Caiaads hacaWGHbGaam4zaiaad6gacaWGHbGaamiDaiaadMgacaWGVbGaamOB aaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzaaaaaa@5702@
    (5)
    ( ρ e ) i n = P a γ 1 ( ρ i n ρ stagnation ) γ 1
    Then the global material state is determined by computing a mean value:
    Pressure
    Δ P i n = i α m a t i ( t ) Δ P i n m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iuamaaBaaaleaacaWGPbGaamOBaaqabaGccqGH9aqpdaaeqaqaaiab eg7aHnaaCaaaleqabaGaamyBaiaadggacaWG0bWaaSbaaWqaaiaadM gaaeqaaaaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabfs5aejaa dcfadaqhaaWcbaGaamyAaiaad6gaaeaacaWGTbGaamyyaiaadshaca GGFbGaamyAaaaaaeaacaWGPbaabeqdcqGHris5aaaa@4F44@
    Density
    ρ i n = i α m a t i ( t ) ρ i n m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgacaWGUbaabeaakiabg2da9maaqababaGaeqySde2a aWbaaSqabeaacaWGTbGaamyyaiaadshadaWgaaadbaGaamyAaaqaba aaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeqyWdi3aa0baaSqa aiaadMgacaWGUbaabaGaamyBaiaadggacaWG0bGaai4xaiaadMgaaa aabaGaamyAaaqab0GaeyyeIuoaaaa@4E4E@
    Energy
    ( ρ e ) i n = i α m a t i ( t ) E i n m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHbpGCcaWGLbaacaGLOaGaayzkaaWaaSbaaSqaaiaadMgacaWGUbaa beaakiabg2da9maaqababaGaeqySde2aaWbaaSqabeaacaWGTbGaam yyaiaadshadaWgaaadbaGaamyAaaqabaaaaOWaaeWaaeaacaWG0baa caGLOaGaayzkaaGaamyramaaDaaaleaacaWGPbGaamOBaaqaaiaad2 gacaWGHbGaamiDaiaac+facaWGPbaaaaqaaiaadMgaaeqaniabggHi Ldaaaa@4FCB@
  2. The optional scaling functions can be used such to scale the volumetric, density or energy fractions.
  3. Parameter P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadweacaWGybGaamivaaqabaaaaa@3AE9@ enables you to take ambient pressure into account in case you want to work with relative pressure Δ P min m a t _ i . This parameter is required by Radioss for correct energy integration at each cycle. Otherwise, numerical EOS solving is generally incorrect. It represents pressure which must be added to EOS calculation to obtain total (physical) pressure. It has no influence on pressure contour in animation files.

    Example using linear EOS:

    Total Pressure: P = P amb + C 1 μ and also P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@

    Relative Pressure: Δ P = C 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc facqGH9aqpcaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaeqiVd0gaaa@3C5B@ , and also P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@

  4. Volumetric fractions enable the sharing of elementary volume within the three different materials.

    For each material, α 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaeqySde2aa0baaSqaaiaaicdaaeaacaWGTbGaamyyaiaadshacaaM i8Uaai4xaiaaxcW7caaMb8UaaGjcVlaadMgaaaaaaa@4702@ must be defined between 0 and 1.

    Sum of initial volumetric fractions i=1 3 α 0 mat_i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaabmaeaacqaHXoqydaqhaaWcbaGaaGimaaqaaiaad2gacaWGHbGa amiDaiaaxcW7caaMb8Uaai4xaiaaygW7caWGPbaaaaqaaiaadMgacq GH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aaaa@4ACD@ must be equal to 1.

    For automatic initial fraction of the volume, refer to /INIVOL.

  5. Perfect gas EOS is P ( μ , E ) = ( γ 1 ) ( 1 + μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGaayjkaiaa wMcaaiabg2da9maabmaapaqaa8qacqaHZoWzcqGHsislcaaIXaaaca GLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaH8oqBaiaa wIcacaGLPaaaaaa@46B1@ . Generally it can be written using this general form P = C 0 + C 1 μ + C 4 ( 1 + μ ) E , where C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@ . This provides more flexibility, depending on whether pressure and energy are total or relative:(6)
    P ( μ , E ) = C 4 ( 1 + μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGaayjkaiaa wMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpe WaaeWaa8aabaWdbiaaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaa caWGfbaaaa@447E@

    Where, C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@ and P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@ .

    This leads to usual form from Δ P ( μ , E ) = C 0 + C 4 ( 1 + μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGa ayjkaiaawMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qacaaIWaaapa qabaGcpeGaey4kaSIaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaa k8qadaqadaWdaeaapeGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawM caaiaadweaaaa@48BC@ .(7)
    Δ P ( μ , E ) = C 0 + C 4 ( 1 + μ ) E
    Where, C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@ ,   C 0 = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadoeapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyp a0JaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3D02@ and P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadweacaWGybGaamivaaWdaeqaaOWd biabg2da9iaadcfapaWaaSbaaSqaa8qacaWGHbGaamyBaiaadkgaa8 aabeaaaaa@3EC9@ .(8)
    Δ P ( μ , Δ E ) = C 0 + C 1 μ + C 4 ( 1 + μ ) Δ E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaeuiLdqKa amyraaGaayjkaiaawMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaey4kaSIaam4qa8aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqaH8oqBcqGHRaWkcaWGdbWdamaaBaaaleaapeGaaG inaaWdaeqaaOWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiVd0ga caGLOaGaayzkaaGaeuiLdqKaamyraaaa@5017@

    Where, C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@ , C 1 = E 0 ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG fbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacq aHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaaaaa@3FF8@ and P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@ .

  6. Δ P min m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaeiLdiaadcfadaqhaaWcbaGaciyBaiaacMgacaGGUbaabaGaamyB aiaadggacaWG0bGaaGjcVlaac+facaWLa8UaaGzaVlaayIW7caWGPb aaaaaa@496A@ flag is the minimum value for the computed pressure.

    Since P = Δ P + P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaqGuoGaamiuaiabgUcaRiaadcfapaWaaSba aSqaa8qacaWGfbGaamiwaiaadsfaa8aabeaaaaa@3EDA@ , defining P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@ implies Δ P P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiaadcfacqGHHjIUcaWGqbaaaa@3A99@ and Δ P m i n P m i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiaadcfapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aa beaak8qacqGHHjIUcaWGqbWdamaaBaaaleaapeGaamyBaiaadMgaca WGUbaapaqabaaaaa@410D@ .

    The materials pressure must remain positive to avoid any tensile strength, then, P m i n = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aabeaa k8qacqGH9aqpcaaIWaaaaa@3C5B@ leads Δ P m i n = P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaabs5acaWGqbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaa paqabaGcpeGaeyypa0JaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaadw eacaWGybGaamivaaWdaeqaaaaa@4157@ .

    For solid materials, the default value for Δ P min m a t _ i = 10 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaeuiLdqKaamiuamaaDaaaleaaciGGTbGaaiyAaiaac6gaaeaacaWG TbGaamyyaiaadshacaaMi8Uaai4xaiaaxcW7caaMb8UaaGjcVlaadM gaaaGccqGH9aqpcaaIXaGaaGimamaaCaaaleqabaGaaG4maiaaicda aaaaaa@4DDF@ is suitable.

  7. EOS parameters must be consistent with gas EOS from adjacent MM-ALE domain.