RD-V: 0510 Prandtl-Meyer Expansion Fan

An expansion wave appears in a supersonic flow as it turns around a convex corner.



Figure 1.

The Prandtl-Meyer expansion fan is a classic example of incompressible fluid mechanics. It involves a supersonic flow propagating along with a convex corner. As the flow turns around the corner, it gradually loses pressure and accelerates. This process is considered isentropic and happens through an infinity of small steps forming a visible fan. The numerical results obtained for the thermodynamics variables in each state can be compared to analytical values obtained using compressible fluid mechanics theory.

Options and Keywords Used

Note: The keywords not supported by HyperMesh are in a separate include file. To view the file in HyperMesh, it is recommended to import the file using the “Include File: Skip” option.

Input Files

The input file used in this verification problem includes:
  • <install_directory>/hwsolvers/demos/radioss/verification/Blast/0510_Prandtl_Meyer_fan/*

Model Description

A supersonic wind tunnel (80 mm length, 20 mm height) is filled with a supersonic flow (M=3) of air.

The lower wall includes a convex corner with a downward angle of 8 degrees.

The flow turns around the corner and expands. Due to the nature of supersonic flows, its pressure, mass density, and temperature decrease, while its velocity and Mach number increase.


Figure 2. Problem Description for the Prandtl-Meyer Expansion Fan

Units: mm, ms, g, N, MPa

Model Method

The fluid domain is meshed with quads elements with an average mesh size of 0.12*0.12 mm. This accounts for around 130 000 elements.

The material law used for air is a hydrodynamic fluid (/MAT/LAW6) in combination with an ideal gas equation of state (/EOS/IDEAL-GAS).

The hydrodynamic fluid (/MAT/LAW6) is used within a multifluid law (/MAT/MULTILFUID) which uses a Finite Volume solver. The fluid is considered non-viscous.

Air is defined with the following characteristics:
/MAT/LAW6
Initial density
1 .225 × 10 6 g m m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGXaGaae OlaiaabkdacaqGYaGaaeynaiabgEna0kaabgdacaqGWaWaaWbaaSqa beaacqGHsislcaaI2aaaaOWaaSaaaeaacaGGNbaabaGaaiyBaiaac2 gadaahaaWcbeqaaiaacodaaaaaaaaa@4412@
/EOS/IDEAL-GAS
Heat capacity ratio
1.4
Initial pressure
0.1 MPa
Initial density
1 .225 × 10 6 g m m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGXaGaae OlaiaabkdacaqGYaGaaeynaiabgEna0kaabgdacaqGWaWaaWbaaSqa beaacqGHsislcaaI2aaaaOWaaSaaaeaacaGGNbaabaGaaiyBaiaac2 gadaahaaWcbeqaaiaacodaaaaaaaaa@4412@

Since there is only one fluid (air), the multi-material law only integrates the air defined using LAW6, with a volume fraction of 1.

To indicate that it is an EULERIAN material, /EULER/MAT should be defined for the /MAT/MULTIFLUID material.

The /ALE/MUSCL option activates a full second-order integration scheme in time and space. It should be added for more precision.

Boundary Conditions



Figure 3. Boundary Conditions for Prandtl-Meyer Expansion Fan
The fluid is given an initial velocity along the z-axis, defined with /INIVEL/FVM as:(1) V x = 0 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadIhaaeqaaOGaeyypa0JaaGimamaalaaabaGaaiyBaaqa aiaacohaaaaaaa@3D2E@ (2) V y = 0 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadIhaaeqaaOGaeyypa0JaaGimamaalaaabaGaaiyBaaqa aiaacohaaaaaaa@3D2E@ (3) V z = 1014 .18510 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadQhaaeqaaOGaeyypa0deaaaaaaaaa8qacaqGXaGaaeim aiaabgdacaqG0aGaaeOlaiaabgdacaqG4aGaaeynaiaabgdacaqGWa WdamaalaaabaGaaiyBaaqaaiaacohaaaaaaa@43B6@
The value of velocity V z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadQhaaeqaaaaa@396E@ corresponds to a speed of Mach 3, with the Mach number M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@383A@ defined as:(4) M = V z a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaey ypa0ZaaSaaaeaacaWGwbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaamyy aaaaaaa@3C46@
Where, a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbaaaa@384E@ is the sound velocity, which is computed as:(5) a= γP ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbGaey ypa0ZaaOaaaeaadaWcaaqaaiabeo7aNjaadcfaaeaacqaHbpGCaaaa leqaaaaa@3DBB@ (6) a=338 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbGaey ypa0JaaG4maiaaiodacaaI4aWaaSaaaeaacaGGTbaabaGaai4Caaaa aaa@3D88@

When using /MAT/MULTIFLUID, the default boundary conditions are sliding walls.

A non-reflecting boundary is defined using /EBCS/INLET/VP. Input density and pressure are defined for the air in the multi-material law.

A non-reflecting boundary is defined with /EBCS/FLUXOUT.

Engine Control

As of the Radioss 2019.0 release, the critical time step scale factor for all ALE and EULER elements default to 0.5.

It can be modified using the keyword /DT/ALE:
/DT/ALE
0.5                  0.000000

Results

It is interesting to look at the pressure once a steady-state condition is reached. The pressure decreases as the air expands.


Figure 4. Pressure Contour of Fluid Domain
The mass density and temperature see a similar decrease through the fan, while the velocity and the flow Mach number increase (Figure 5).


Figure 5. Mach Number Contour of Fluid Domain


Figure 6. Density Contour of Fluid Domain

Values of all thermodynamics quantities (pressure, mass density, etc.) in the final state after the expansion fan can be computed, and the numerical results compared to analytical values.

Analytical Analysis

As the flow turns around the corner, it goes through an infinite number of expansion waves, which together form the expansion fan. Each expansion wave causes a decrease in pressure, as well as an acceleration of the flow. The first Mach line is at an angle φ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHgpGAda WgaaWcbaGaaeOmaaqabaaaaa@3A06@ with respect to the flow direction, and the last Mach line is at an angle φ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHgpGAda WgaaWcbaGaaeOmaaqabaaaaa@3A06@ inferior to φ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHgpGAda WgaaWcbaGaaeOmaaqabaaaaa@3A06@ . Since the flow turns in small angles and the changes across each expansion wave are small, the whole process is considered isentropic. φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHgpGAaa a@3925@ is called the Mach angle, and defined as:(7) φ = sin 1 ( 1 M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHgpGAca qG9aGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacqGHsislcaaIXaaa aOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGnbaaaaGaayjkaiaawM caaaaa@41C2@


Figure 7. Deflection of a Supersonic Flow through an Expansion Fan
The Mach number M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaW baaSqabeaacaaIYaaaaaaa@3923@ of the flow in the final state is obtained from the Prandtl-Meyer angle v( M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaacaWGnbaacaGLOaGaayzkaaaaaa@3ABE@ of the incident flow. The Prandtl-Meyer angle of a flow is a function of its Mach number, defined as:(8) v ( M ) = γ + 1 γ 1 arctan γ + 1 γ 1 ( M 2 1 ) arctan M 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaacaWGnbaacaGLOaGaayzkaaGaeyypa0ZaaOaaaeaadaWcaaqa aiabeo7aNjabgUcaRiaaigdaaeaacqaHZoWzcqGHsislcaaIXaaaaa WcbeaakiGacggacaGGYbGaai4yaiaacshacaGGHbGaaiOBamaakaaa baWaaSaaaeaacqaHZoWzcqGHRaWkcaaIXaaabaGaeq4SdCMaeyOeI0 IaaGymaaaadaqadaqaaiaad2eadaahaaWcbeqaaiaaikdaaaGccqGH sislcaaIXaaacaGLOaGaayzkaaaaleqaaOGaeyOeI0Iaciyyaiaack hacaGGJbGaaiiDaiaacggacaGGUbWaaOaaaeaacaWGnbWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaaGymaaWcbeaaaaa@5DE5@
The Prandtl-Meyer angle of the incident flows and the angle of the corner θ (in deg) are bound by this relation:(9) v( M 2 )=v( M 1 )+θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaacaWGnbWaaSbaaSqaaiaabkdaaeqaaaGccaGLOaGaayzkaaGa eyypa0JaamODamaabmaabaGaamytamaaBaaaleaacaqGXaaabeaaaO GaayjkaiaawMcaaiaabUcacqaH4oqCaaa@4353@
Once the value of the Prandtl angle in the final state v ( M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaacaWGnbWaaSbaaSqaaiaabkdaaeqaaaGccaGLOaGaayzkaaaa aa@3BA9@ is determined, the equation for the Prandtl-Meyer angle is reversed to determine the Mach number ( M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aad2eadaWgaaWcbaGaaeOmaaqabaaakiaawIcacaGLPaaaaaa@3AAE@ . Pressure and mass density in the final state are determined using the isentropic flow relations:(10) P 2 P 1 = ( 1 + γ 1 2 M 1 2 1 + γ 1 2 M 2 2 ) γ γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai aadcfadaWgaaWcbaGaaGOmaaqabaaakeaacaWGqbWaaSbaaSqaaiaa igdaaeqaaaaakiabg2da9maabmaabaWaaSaaaeaacaaIXaGaey4kaS YaaSaaaeaacqaHZoWzcqGHsislcaaIXaaabaGaaGOmaaaacaWGnbWa aSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG ymaiabgUcaRmaalaaabaGaeq4SdCMaeyOeI0IaaGymaaqaaiaaikda aaGaamytamaaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaGOmaa aaaaaakiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaeq4SdCga baGaeq4SdCMaeyOeI0IaaGymaaaaaaaaaa@53B4@ (11) ρ 2 ρ 1 = ( 1+ γ1 2 M 1 2 1+ γ1 2 M 2 2 ) 1 γ1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai abeg8aYnaaBaaaleaacaaIYaaabeaaaOqaaiabeg8aYnaaBaaaleaa caaIXaaabeaaaaGccqGH9aqpdaqadaqaamaalaaabaGaaGymaiabgU caRmaalaaabaGaeq4SdCMaeyOeI0IaaGymaaqaaiaaikdaaaGaamyt amaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGOmaaaaaOqaai aaigdacqGHRaWkdaWcaaqaaiabeo7aNjabgkHiTiaaigdaaeaacaaI Yaaaaiaad2eadaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaik daaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaabgda aeaacqaHZoWzcqGHsislcaaIXaaaaaaaaaa@5497@
Table 1. Analytical Values for the Thermodynamic Variables of the Flow
Initial State Final State
Mach number 3 3.4519
Pressure [MPa] 0.180 0.0516
Mass density [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaGGZaaa aaaaaOGaay5waiaaw2faaaaa@3D25@ 1.225E-06 7.6337E-07

Results Comparison with Analytical Values

Numerical results for the thermodynamic variables can be read by drawing a node path along a current line going through the fan, as:


Figure 8. Two Possible Node Paths Going Through Every State of the Flow

To draw node paths, the elemental results visible on the animation have to be averaged at the nodes, using the averaging method simple in HyperView.

The spatial profile for pressure and mass density on this node path are visible in Figure 9. The two flats on the curves correspond to the initial and final states. The value of the thermodynamic quantities from the model are compared to those determined analytically.(12) P 2 P 1 = 2 γ M 1 2 sin ( β ) 2 γ + 1 γ + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai aadcfadaWgaaWcbaGaaGOmaaqabaaakeaacaWGqbWaaSbaaSqaaiaa igdaaeqaaaaakiabg2da9maalaaabaGaaeOmaiabeo7aNjaad2eada qhaaWcbaGaaGymaaqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaqa daqaaiabek7aIbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki abgkHiTiabeo7aNjabgUcaRiaaigdaaeaacqaHZoWzcqGHRaWkcaaI Xaaaaaaa@4F61@ (13) ρ 2 ρ 1 = ( γ + 1 ) M 1 2 sin ( β ) 2 2+ ( γ 1 ) M 1 2 sin ( β ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai abeg8aYnaaBaaaleaacaaIYaaabeaaaOqaaiabeg8aYnaaBaaaleaa caaIXaaabeaaaaGccqGH9aqpdaWcaaqaamaabmaabaGaeq4SdCMaey 4kaSIaaGymaaGaayjkaiaawMcaaiaad2eadaqhaaWcbaGaaGymaaqa aiaaikdaaaGcciGGZbGaaiyAaiaac6gadaqadaqaaiabek7aIbGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaabkdacaqGRaWa aeWaaeaacqaHZoWzcqGHsislcaqGXaaacaGLOaGaayzkaaGaamytam aaDaaaleaacaaIXaaabaGaaGOmaaaakiGacohacaGGPbGaaiOBamaa bmaabaGaeqOSdigacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa aaaaa@5BD2@


Figure 9. Pressure and Mass Density Spatial Profile in Steady State. with the value of the relative error to the analytical value
The relative error between numerical and analytical values in the final state for pressure, mass density, and Mach number is less than 1%.
Table 2. Analytical and Radioss Results for Final Pressure, Mass Density, and Mach number
Values Analytical Simulation Percent Error
Mach number 3.4519 3.4518 0.004
Pressure [MPa] 0.05157 0.05158 0.004
Mass density [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaGGZaaa aaaaaOGaay5waiaaw2faaaaa@3D25@ 7.6337E-07 7.6334E-07 0.003

Conclusion

Supersonic flow is modeled using a /MAT/LAW6 hydrodynamic fluid law with an ideal gas equation of state (/EOS/IDEAL-GAS). This material is then referenced by the multi-fluid material /MAT/LAW151 (MULTIFLUID) which uses the finite volume solver. An expansion fan forms as the flow goes around a convex corner.

The analytical approach shows a good correlation between theoretical and numerical results.

The expansion process is correctly simulated. The use of the multi-fluid material allows for very accurate modeling of the dynamics of supersonic flows.

1 R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, 1998