rsf2csf
Transforms a real Schur form to a complex Schur form.
Syntax
[UM, TM] = rsf2csf(U, T)
Inputs
- U
- A unitary matrix.
- T
- A real Schur matrix.
Outputs
- UM
- A unitary matrix.
- TM
- A complex Schur matrix.
Examples
U = [0.4282 0.0425 0.8965 -0.1054;
0.5192 -0.2047 -0.1421 0.8175;
0.7309 -0.0320 -0.4114 -0.5436;
0.1140 0.9774 -0.0822 0.1580];
T = [4.4522 1.6545 -0.5498 0.3187;
0 0.5742 -2.3726 0.4390;
0 1.1464 0.5742 0.5319;
0 0 0 1.3994];
[UM, TM] = rsf2csf(U,T)
UM = [Matrix] 4 x 4
0.42820 + 0.00000i 0.51169 + 0.03490i -0.02426 - 0.73613i -0.10540 + 0.00000i
0.51920 + 0.00000i -0.08111 - 0.16808i 0.11684 + 0.11668i 0.81750 + 0.00000i
0.73090 + 0.00000i -0.23481 - 0.02628i 0.01826 + 0.33781i -0.54360 + 0.00000i
0.11400 + 0.00000i -0.04692 + 0.80256i -0.55787 + 0.06750i 0.15800 + 0.00000i
TM = [Matrix] 4 x 4
4.45220 + 0.00000i -0.31381 + 1.35853i -0.94433 + 0.45145i 0.31870 + 0.00000i
0.00000 + 0.00000i 0.57420 + 1.64923i 1.22620 + 0.00000i 0.30359 - 0.36047i
0.00000 + 0.00000i 0.00000 + 0.00000i 0.57420 - 1.64923i -0.25057 + 0.43675i
0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i 1.39940 + 0.00000i
Comments
When the real Schur form has an upper quasi-triangular matrix T, it indicates the the presence of complex Eigenvalues. The complex Schur form has an upper triangular matrix TM with the complex Eigenvalues on the diagonal of TM.
A = U * T * U' = UM * TM * UM', where U and UM are both unitary.
If the matrix has only real Eigenvalues, then the two forms are the same.