obsvf
Calculates the observability staircase form.
Syntax
[ABAR, BBAR, CBAR, T, K] = obsvf(A, B, C)
[ABAR, BBAR, CBAR, T, K] = obsvf(A, B, C, TOL)
Inputs
- A
- The state matrix (n x n), where n is the number of states.
- B
- The input matrix (n x p), where p is the number of inputs.
- C
- The output matrix (q x n), where q is the number of outputs.
- TOL
- A scalar real (tolerance). By default, 10 * n * norm(a, 1) * eps().
Outputs
- ABAR
- The observability staircase state matrix.
- BBAR
- The observability staircase input matrix.
- CBAR
- The observability staircase output matrix.
- T
- The similarity transform matrix.
- K
- A vector containing the number of observable states.
Examples
A = [5 4;
4 -2];
B = [1 -2;
1 -2];
C = [1.5 0;
0 1.5];
[Abar, Bbar, Cbar, T, k] = obsvf(A, B, C)
Abar = [Matrix] 2 x 2
5 4
4 -2
Bbar = [Matrix] 2 x 2
1 -2
1 -2
Cbar = [Matrix] 2 x 2
1.50000 0.00000
0.00000 1.50000
T = [Matrix] 2 x 2
1 0
0 1
k = [Matrix] 1 x 2
2 0
sys_tf = tf([1],[2 3 1]);
sys = ss(sys_tf);
[Abar, Bbar, Cbar, T, k] = obsvf(sys.a, sys.b, sys.c)
Abar = [Matrix] 2 x 2
-1.50000 -0.50000
1.00000 0.00000
Bbar = [Matrix] 2 x 1
-0.50000
0.00000
Cbar = [Matrix] 1 x 2
0 -1
T = [Matrix] 2 x 2
-1 0
0 -1
k = [Matrix] 1 x 2
1 1
Comments
[ABAR, BBAR, CBAR, T, K] = obsvf(A, B, C) computes the observability staircase form of A, B, C.