logm
Matrix logarithm.
Syntax
R = logm(X)
Inputs
- X
- A square matrix.
Outputs
- R
- The matrix logarithm.
Example
A0 = [1,2;3,4];
r0 = logm(A0)
s0 = expm(logm(A0))
norm(A0 - s0)
A1=A0*A0';
r1=logm(A1)
s1 = expm(logm(A1))
norm(A1 - s1)
r0 = [Matrix] 2 x 2
-0.35044 + 2.39112i 0.92935 - 1.09376i
1.39403 - 1.64064i 1.04359 + 0.75047i
s0 = [Matrix] 2 x 2
1.00000e+00 + 2.83107e-15i 2.00000e+00 + 1.05471e-15i
3.00000e+00 + 3.49720e-15i 4.00000e+00 - 8.88178e-16i
ans = 1.33087e-14
r1 = [Matrix] 2 x 2
-1.12547 2.00048
2.00048 2.51177
s1 = [Matrix] 2 x 2
5.00000 11.00000
11.00000 25.00000
ans = 1.21221e-13
Comments
References:
- 'Evaluating Pade Approximants', SIAM J. MATRIX ANAL. APPL. 2001, Vol. 22, No. 4, pages 1126-1135
- 'A Schur-Parlett Algorithm for Computing Matrix Functions', SIAM J. MATRIX ANAL. APPL. Vol. 25, No. 2, pages 464-485.