Generic Heat Exchanger Component

Generic Heat Exchanger Description and Quick Guide

The Generic Heat Exchanger requires that the heat exchanger performance is known. There are several options to specify the performance such as: temperature change, thermal duty, NTU, effectiveness, and the Hs parameter.

Generic Heat Exchanger can be used in Compressible and Incompressible (hydraulic and non-hydraulic) simulations. Currently no phase change is available. The component has four fluid connections, and it models heat exchange between two streams in a network. Heat Exchangers in Flow Simulator come with 4 hidden chambers representing the 4 sides of a heat exchanger. The Generic Heat Exchanger uses Orifice or Effective Area elements (Compressible or Incompressible) in the backend to model restrictions losses (pressure loss) of both flow paths based on user defined loss parameters and characteristic flow area. The Heat addition/removal is calculated based on user inputs for Heat Exchanger Performance curves in Generic Hx module and Q (Heat Addition/Removal) is supplied to Orifice or Effective Area Elements to predict temperatures of the exiting fluids.



Some of the important modeling aspects to be taken care while using heat exchanger components are:
  • The Hot Side circuit must get connected to Line 1 (Indicated by Red Color part of Component Image) & Cold Side circuit get connected to Line 2 (Indicated with Blue Color part of Component Image) as shown in the image below.


  • You can choose to model additional inlet and outlet losses using the separate Discrete Loss/Tube Element upstream and downstream of heat exchanger respectively.
  • The Hot/Cold Side circuit line must be connected with either compressible or Incompressible set of elements. Mixing of elements sets for a Hot/Cold side circuit line is not allowed. Below Table represents some modelling/Allowable scenarios.
Modeling/Allowable Scenarios Flow Simulator Network
Hot Side: Compressible Gases

Cold Side: Compressible Gases

Example: Air to Air Heat Exchanger


Hot Side : Incompressible Liquids

Cold Side : Incompressible Liquids

Example: Fuel Cooled Oil Cooler (FCOC)


Hot Side: Incompressible Liquids

Cold Side: Compressible Gases

Example: Air Cooled Oil Cooler (ACOC)


Hot Side: Compressible Gases

Cold Side: Incompressible Liquids

Example: Air to Liquid Heat Exchanger


Flow Simulator can also be used for Heat Exchanger design. For heat exchanger design a detailed representation of the heat exchanger is required. The example below shows flow elements representing the cold and hot side with thermal network resistors connecting the sides. Heat exchanger performance can be predicted from such a model.



Generic Heat Exchanger Element Inputs

Table of the inputs for the Generic Heat Exchanger Component.

Element Specific Generic Heat Exchanger Component Input Variables
Index UI Name (.flo label) Description
3,11

Cross Sectional Area

(AREA_COLD, AREA_HOT)

Flow area for hot & cold side fluids
4,12

Hydraulic Diameter

(HYD_DIA_COLD, HYD_DIA_HOT)

Hydraulic Diameter for hot & cold side fluids
5,13

Pressure Loss Options

(PLOSS_COLD, PLOSS_HOT)

Options to specify type of pressure loss modelling

  1. Fixed Loss Coefficient
  2. Fixed Total Pressure Drop
  3. Flow vs Delta.P (PTIN – PSEX)
  4. Velocity vs Delta.P (PTIN – PSEX)
  5. Loss Coefficient vs Reynolds Number
6,14

Loss Coefficient

(KLOSS_COLD, KLOSS_HOT)

Incompressible Loss Coefficient
7,15

Delta Total Pressure

(DELTA_PT_COLD, DELTA_PT_HOT)

Total pressure drop across a flow path
T1, T2, T3, T4

Flow vs Delta P

(COLD_DELTA-P, COLD_FLOW,

HOT_DELTA-P, HOT_FLOW)

  • User Specified Curve for Flow vs Delta.P. Delta-P table is the DIFFERENCE between the upstream driving total pressure and downstream sink static pressure
T1, T2, T3, T4

Fluid Velocity vs Delta P (COLD_DELTA-P, COLD_VEL,

HOT_DELTA-P, HOT_VEL)

User Specified Curve for Fluid Velocity vs Delta.P. Delta-P table is the DIFFERENCE between the upstream driving total pressure and downstream sink static pressure
T1, T2, T3, T4

Loss Coefficient vs Reynolds Number

(COLD_KLOSS, COLD_REYN,

HOT_ KLOSS, HOT_REYN)

User Specified Curve for Loss Coefficient vs Reynolds Number.

Reynolds Number= ( 4.0 * W/ ( PERIM * μ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyzaiaadMhacaWGUbGaam4BaiaadYgacaWGKbGaam4C aiaacckacaWGobGaamyDaiaad2gacaWGIbGaamyzaiaadkhacqGH9a qpcaGGGcWaaeWaa8aabaWdbiaaisdacaGGUaGaaGimaiaacckacaGG QaGaaiiOaiaadEfacaGGVaGaaiiOamaabmaapaqaa8qacaWGqbGaam yraiaadkfacaWGjbGaamytaiaacckacaGGQaGaaiiOaiabeY7aTbGa ayjkaiaawMcaaaGaayjkaiaawMcaaaaa@5A4B@

Where:

  • μ = D y n a m i c   V i s c o s i t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBcqGH9aqpcaWGebGaamyEaiaad6gacaWGHbGaamyBaiaa dMgacaWGJbGaaiiOaiaadAfacaWGPbGaam4CaiaadogacaWGVbGaam 4CaiaadMgacaWG0bGaamyEaaaa@48DB@
  • W=Mass Flow Rate MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbGaeyypa0JaamytaiaadggacaWGZbGaam4CaiaacckacaWG gbGaamiBaiaad+gacaWG3bGaaiiOaiaadkfacaWGHbGaamiDaiaadw gaaaa@4537@
  • PERIM=Perimeter=User Input MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamyraiaadkfacaWGjbGaamytaiabg2da9iaadcfacaWG LbGaamOCaiaadMgacaWGTbGaamyzaiaadshacaWGLbGaamOCaiabg2 da9iaadwfacaWGZbGaamyzaiaadkhacaGGGcGaamysaiaad6gacaWG WbGaamyDaiaadshaaaa@4E15@
If Hydraulic Diameter is provided, then:
  • Perimeter=4.0 * A / HYDDIAM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamyzaiaadkhacaWGPbGaamyBaiaadwgacaWG0bGaamyz aiaadkhacqGH9aqpcaaI0aGaaiOlaiaaicdacaGGGcGaaiOkaiaacc kacaWGbbGaaiiOaiaac+cacaGGGcGaamisaiaadMfacaWGebGaamir aiaadMeacaWGbbGaamytaaaa@4DFD@
If Hydraulic Diameter or Perimeter is not Provided, Reynolds number is calculated based on Orifice Area:
  • P e r i m e t e r = ( 4.0   *   D P I   *   A ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamyzaiaadkhacaWGPbGaamyBaiaadwgacaWG0bGaamyz aiaadkhacqGH9aqpdaGcaaWdaeaapeWaaeWaa8aabaWdbiaaisdaca GGUaGaaGimaiaacckacaGGQaGaaiiOaiaadseacaWGqbGaamysaiaa cckacaGGQaGaaiiOaiaadgeaaiaawIcacaGLPaaaaSqabaaaaa@4CA3@
25 Heat Transfer Options (HOPT)

Options for Modelling Heat Transfer between Hot & Cold side Fluids

  1. Thermal Duty: Heat Input
  2. Hot Fluid Delta.T
  3. Cold Fluid Delta.T
  4. Effectiveness
  5. Effectiveness vs Flow_Rate_Cold vs Flow_Rate_Hot
    1. Effectiveness vs NTU vs Heat Capacity Ratio
    2. Nusselt Number vs RE_Cold vs RE_Hot
    3. Constant hA coefficient value

14) Hs Constant

15) Hs vs Flow_Rate_Cold vs Flow_Rate_Hot

26 Heat Input (QIN) Heat Addition
27 Fluid Delta.T (DELT_T) Delta Total Temperature for Hot (or Cold) Side fluid
28 Effectiveness (EFFECTIVENESS) Effectiveness of Heat Exchanger

T4, T5,

T6

Effectiveness vs Flow_Rate_Cold vs Flow_Rate_Hot

(FLOWRATE_COLD, FLOW_HOT.., EFFECTIVENESS)

3d Table for Effectiveness vs Flow_Rate_Cold vs Flow_Rate_Hot

T4, T5,

T6

Effectiveness vs NTU vs Heat Capacity Ratio

(NTU, ..HEAT_RATIO, EFFECTIVENESS)

3d Table for Effectiveness vs NTU vs Heat Capacity Ratio

T7,

T8,

T9

Nusselt Number vs RE_Cold vs RE_Hot

(NusseltNumber, ReynoldsCold, ReynoldsHot)

3d Nusselt Number vs RE_Cold vs RE_Hot
37 Overall Heat Transfer Coefficient (OVERALL_HTC) Overall Heat Transfer Coefficient Input
29

Type of Configurations

(CONFIG_TYPE)

Heat Exchangers Flow Configurations

  1. Parallel Flow
  2. Counter Flow
  3. Shell & Tube
  4. Cross flow both flows unmixed
  5. Cross flow One fluid mixed
31 Primary hA coefficient (PRI_HA) Htc*Area Coefficient of Primary side fluid
32 Secondary hA coefficient (SEC_HA) Htc*Area Coefficient of Secondary side fluid
30 Number of Shell Passes (NUM_SHELL_PASS) No of Shell Passes for Shell & Tube Hx Configurations
40 Select Mixed Flow (MIXED_FLOW)

Mixed Flow side of HX for Cross flow one side mixed option.

1=Primary, 2=Secondary

41 HX Area (HX_AREA) The total heat exchanger area to be used with the Hs performance parameter
42

Hs Parameter

(HS_PARAMETER)

A Heat Exchanger Performance Parameter

Generic Heat Exchanger Theory Manual

Nomenclature:  
W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbaaaa@36F5@ : Mass flow rate C: Heat Capacity
ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCaaa@37D9@ : Density Q: Heat Addition/Rejection
C p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamiCaaaa@37D6@ : Specific Heat Tt: Total Temperature
NTU: Number of Transfer Units  
Subscripts:  
in, up, 1: Upstream station C: Cold
ex, dn, 2: Downstream station H: Hot

Pressure Loss Calculations

There are five different options through which pressure loss across hot or Cold stream can be modelled. They are:

  1. Fixed Loss Coefficient
  2. Fixed Total Pressure Drop
  3. Flow vs Delta.P (PTIN – PSEX)
  4. Velocity vs Delta.P (PTIN – PSEX)
  5. Loss Coefficient vs Reynolds Number

As discussed above, Generic Heat Exchanger uses Orifice or Effective Area elements (Compressible or Incompressible) in the backend to model restrictions losses (pressure loss).

To get more details on pressure drop calculation for:

  • Fixed Loss Coefficient and Fixed Pressure Drop input refer to the Orifice Documentation.
  • Curve based inputs (3,4,5) mentioned above refer to the Effective-Area Orifice Documentation

Heat Transfer Calculations

  1. Heat Input (Qin)

    T t , e x , C o l d = T t , i n , C o l d + Q i n W C o l d * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbGaamyAaiaad6gaa8aabaWdbiaadEfapaWaaSbaaSqa a8qacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaaiOkaiaado eacaWGWbWdamaaBaaaleaapeGaamyyaiaadAhacaWGNbGaaiilaiaa doeacaWGVbGaamiBaiaadsgaa8aabeaaaaaaaa@5C04@

    T t,ex,Hot = T t,in,Hot Qin W Hot *C p avg,Hot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuai aadMgacaWGUbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaamisaiaa d+gacaWG0baapaqabaGcpeGaaiOkaiaadoeacaWGWbWdamaaBaaale aapeGaamyyaiaadAhacaWGNbGaaiilaiaadIeacaWGVbGaamiDaaWd aeqaaaaaaaa@589F@

  2. Hot Fluid Delta.T

    Q =   W H o t * C p a v g , H o t   ( T t , i n , H o t T t , e x , H o t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOaiaadEfapaWaaSbaaSqaa8qacaWGibGa am4Baiaadshaa8aabeaak8qacaGGQaGaam4qaiaadchapaWaaSbaaS qaa8qacaWGHbGaamODaiaadEgacaGGSaGaamisaiaad+gacaWG0baa paqabaGcpeGaaiiOamaabmaapaqaa8qacaWGubWdamaaBaaaleaape GaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGaam4Baiaadsha a8aabeaak8qacqGHsislcaWGubWdamaaBaaaleaapeGaamiDaiaacY cacaWGLbGaamiEaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaOWd biaawIcacaGLPaaaaaa@5A7A@

    T t,ex,Cold = T t,in,Cold + Q W Cold *C p avg,Cold MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaam4qaiaa d+gacaWGSbGaamizaaWdaeqaaOWdbiaacQcacaWGdbGaamiCa8aada WgaaWcbaWdbiaadggacaWG2bGaam4zaiaacYcacaWGdbGaam4Baiaa dYgacaWGKbaapaqabaaaaaaa@5A23@

  3. Cold Fluid Delta.T

    Q =   W C o l d * C p a v g , C o l d t   ( T t , e x , C o l d T t , i n , C o l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOaiaadEfapaWaaSbaaSqaa8qacaWGdbGa am4BaiaadYgacaWGKbaapaqabaGcpeGaaiOkaiaadoeacaWGWbWdam aaBaaaleaapeGaamyyaiaadAhacaWGNbGaaiilaiaadoeacaWGVbGa amiBaiaadsgacaWG0baapaqabaGcpeGaaiiOamaabmaapaqaa8qaca WGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaacYca caWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyOeI0Iaamiva8 aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGaam4q aiaad+gacaWGSbGaamizaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@5EE3@

    T t,ex,Hot = T t,in,Hot Q W Hot *C p avg,Hot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuaa WdaeaapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWd aeqaaOWdbiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaaaaaa@56BE@

  4. Effectiveness

    C H o t =   A B S ( W H o t ) * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaGc peGaeyypa0JaaiiOaiaadgeacaWGcbGaam4uamaabmaapaqaa8qaca WGxbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaaak8qa caGLOaGaayzkaaGaaiOkaiaadoeacaWGWbWdamaaBaaaleaapeGaam yyaiaadAhacaWGNbGaaiilaiaadIeacaWGVbGaamiDaaWdaeqaaaaa @4D4C@

    C C o l d =   A B S ( W C o l d ) * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaam4qaiaad+gacaWGSbGaamizaaWd aeqaaOWdbiabg2da9iaacckacaWGbbGaamOqaiaadofadaqadaWdae aapeGaam4va8aadaWgaaWcbaWdbiaadoeacaWGVbGaamiBaiaadsga a8aabeaaaOWdbiaawIcacaGLPaaacaGGQaGaam4qaiaadchapaWaaS baaSqaa8qacaWGHbGaamODaiaadEgacaGGSaGaam4qaiaad+gacaWG SbGaamizaaWdaeqaaaaa@4FE0@

    C m i n = m i n ( C H o t ,   C C o l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWdbiaadoeapa WaaSbaaSqaa8qacaWGibGaam4Baiaadshaa8aabeaak8qacaGGSaGa aiiOaiaadoeapaWaaSbaaSqaa8qacaWGdbGaam4BaiaadYgacaWGKb aapaqabaaak8qacaGLOaGaayzkaaaaaa@4A45@

    Q M a x =   C m i n * ( T h , i n T c , i n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaamytaiaadggacaWG4baapaqabaGc peGaeyypa0JaaiiOaiaadoeapaWaaSbaaSqaa8qacaWGTbGaamyAai aad6gaa8aabeaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSba aSqaa8qacaWGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0 Iaamiva8aadaWgaaWcbaWdbiaadogacaGGSaGaamyAaiaad6gaa8aa beaaaOWdbiaawIcacaGLPaaaaaa@4D25@

    Q =   Q M a x * E f f e c t i v e n e s s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOaiaadgfapaWaaSbaaSqaa8qacaWGnbGa amyyaiaadIhaa8aabeaak8qacaGGQaGaamyraiaadAgacaWGMbGaam yzaiaadogacaWG0bGaamyAaiaadAhacaWGLbGaamOBaiaadwgacaWG ZbGaam4Caaaa@49D1@

    T t , e x , C o l d = T t , i n , C o l d + Q W C o l d * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaam4qaiaa d+gacaWGSbGaamizaaWdaeqaaOWdbiaacQcacaWGdbGaamiCa8aada WgaaWcbaWdbiaadggacaWG2bGaam4zaiaacYcacaWGdbGaam4Baiaa dYgacaWGKbaapaqabaaaaaaa@5A23@

    T t , e x , H o t = T t , i n , H o t Q W H o t * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuaa WdaeaapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWd aeqaaOWdbiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaaaaaa@56BE@

  5. Effectiveness vs Flow_Rate_Cold vs Flow_Rate_Hot

    Effectiveness is obtained from User Defined Input for Effectiveness as function Flow_Rate_Cold and Flow_Rate_Hot.

    C H o t =   A B S ( W H o t ) * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaGc peGaeyypa0JaaiiOaiaadgeacaWGcbGaam4uamaabmaapaqaa8qaca WGxbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaaak8qa caGLOaGaayzkaaGaaiOkaiaadoeacaWGWbWdamaaBaaaleaapeGaam yyaiaadAhacaWGNbGaaiilaiaadIeacaWGVbGaamiDaaWdaeqaaaaa @4D4C@

    C C o l d =   A B S ( W C o l d ) * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaam4qaiaad+gacaWGSbGaamizaaWd aeqaaOWdbiabg2da9iaacckacaWGbbGaamOqaiaadofadaqadaWdae aapeGaam4va8aadaWgaaWcbaWdbiaadoeacaWGVbGaamiBaiaadsga a8aabeaaaOWdbiaawIcacaGLPaaacaGGQaGaam4qaiaadchapaWaaS baaSqaa8qacaWGHbGaamODaiaadEgacaGGSaGaam4qaiaad+gacaWG SbGaamizaaWdaeqaaaaa@4FE0@

    C m i n = m i n ( C H o t ,   C C o l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWdbiaadoeapa WaaSbaaSqaa8qacaWGibGaam4Baiaadshaa8aabeaak8qacaGGSaGa aiiOaiaadoeapaWaaSbaaSqaa8qacaWGdbGaam4BaiaadYgacaWGKb aapaqabaaak8qacaGLOaGaayzkaaaaaa@4A45@

    Q M a x =   C m i n * ( T h , i n T c , i n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaamytaiaadggacaWG4baapaqabaGc peGaeyypa0JaaiiOaiaadoeapaWaaSbaaSqaa8qacaWGTbGaamyAai aad6gaa8aabeaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSba aSqaa8qacaWGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0 Iaamiva8aadaWgaaWcbaWdbiaadogacaGGSaGaamyAaiaad6gaa8aa beaaaOWdbiaawIcacaGLPaaaaaa@4D25@

    Q =   Q M a x * E f f e c t i v e n e s s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOaiaadgfapaWaaSbaaSqaa8qacaWGnbGa amyyaiaadIhaa8aabeaak8qacaGGQaGaamyraiaadAgacaWGMbGaam yzaiaadogacaWG0bGaamyAaiaadAhacaWGLbGaamOBaiaadwgacaWG ZbGaam4Caaaa@49D1@

    T t , e x , C o l d = T t , i n , C o l d + Q W C o l d * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaam4qaiaa d+gacaWGSbGaamizaaWdaeqaaOWdbiaacQcacaWGdbGaamiCa8aada WgaaWcbaWdbiaadggacaWG2bGaam4zaiaacYcacaWGdbGaam4Baiaa dYgacaWGKbaapaqabaaaaaaa@5A23@

    T t , e x , H o t = T t , i n , H o t Q W H o t * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuaa WdaeaapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWd aeqaaOWdbiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaaaaaa@56BE@

  6. Effectiveness vs NTU vs Heat Capacity Ratio

    Effectiveness is obtained from User Defined Input for Effectiveness as function NTU and Heat Capacity Ratio.

    N T U =   U A C m i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamivaiaadwfacqGH9aqpcaGGGcWaaSaaa8aabaWdbiaa dwfacaWGbbaapaqaa8qacaWGdbWdamaaBaaaleaapeGaamyBaiaadM gacaWGUbaapaqabaaaaaaa@40AC@

    C R a t i o =   C m i n C m a x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamOuaiaadggacaWG0bGaamyAaiaa d+gaa8aabeaak8qacqGH9aqpcaGGGcWaaSaaa8aabaWdbiaadoeapa WaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aabeaaaOqaa8qacaWG dbWdamaaBaaaleaapeGaamyBaiaadggacaWG4baapaqabaaaaaaa@464C@

    UA is calculated from Constant user input or from curve specified for Nusselt Number as function of Reynolds Number Cold and Reynolds Number Hot

    U A =   N u s s e l t _ N u m b e r   * K D h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbGaamyqaiabg2da9iaacckadaWcaaWdaeaapeGaamOtaiaa dwhacaWGZbGaam4CaiaadwgacaWGSbGaamiDaiaac+facaWGobGaam yDaiaad2gacaWGIbGaamyzaiaadkhacaGGGcGaaiOkaiaadUeaa8aa baWdbiaadseacaWGObaaaaaa@4B84@

    E f f e c t i v e n e s s = 1 e ( ( 1 C R a t i o ) N T U 0.22 e ( C R a t i o N T U 0.78 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaGymai abgkHiTiaadwgapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbmaabmaa paqaa8qadaWccaWdaeaapeGaaGymaaWdaeaapeGaam4qa8aadaWgaa adbaWdbiaadkfacaWGHbGaamiDaiaadMgacaWGVbaapaqabaaaaaWc peGaayjkaiaawMcaaiaad6eacaWGubGaamyva8aadaahaaadbeqaa8 qacaaIWaGaaiOlaiaaikdacaaIYaaaaSGaamyza8aadaahaaadbeqa a8qadaqadaWdaeaapeGaeyOeI0Iaam4qa8aadaWgaaqaa8qacaWGsb GaamyyaiaadshacaWGPbGaam4BaaWdaeqaa8qacaWGobGaamivaiaa dwfapaWaaWbaaeqabaWdbiaaicdacaGGUaGaaG4naiaaiIdaaaGaey OeI0IaaGymaaGaayjkaiaawMcaaaaaaSGaayjkaiaawMcaaaaaaaa@66C4@

    C H o t =   A B S ( W H o t ) * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaGc peGaeyypa0JaaiiOaiaadgeacaWGcbGaam4uamaabmaapaqaa8qaca WGxbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaaak8qa caGLOaGaayzkaaGaaiOkaiaadoeacaWGWbWdamaaBaaaleaapeGaam yyaiaadAhacaWGNbGaaiilaiaadIeacaWGVbGaamiDaaWdaeqaaaaa @4D4C@

    C C o l d =   A B S ( W C o l d ) * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaam4qaiaad+gacaWGSbGaamizaaWd aeqaaOWdbiabg2da9iaacckacaWGbbGaamOqaiaadofadaqadaWdae aapeGaam4va8aadaWgaaWcbaWdbiaadoeacaWGVbGaamiBaiaadsga a8aabeaaaOWdbiaawIcacaGLPaaacaGGQaGaam4qaiaadchapaWaaS baaSqaa8qacaWGHbGaamODaiaadEgacaGGSaGaam4qaiaad+gacaWG SbGaamizaaWdaeqaaaaa@4FE0@

    C m i n = m i n ( C H o t ,   C C o l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWdbiaadoeapa WaaSbaaSqaa8qacaWGibGaam4Baiaadshaa8aabeaak8qacaGGSaGa aiiOaiaadoeapaWaaSbaaSqaa8qacaWGdbGaam4BaiaadYgacaWGKb aapaqabaaak8qacaGLOaGaayzkaaaaaa@4A45@

    Q M a x =   C m i n * ( T h , i n T c , i n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaamytaiaadggacaWG4baapaqabaGc peGaeyypa0JaaiiOaiaadoeapaWaaSbaaSqaa8qacaWGTbGaamyAai aad6gaa8aabeaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSba aSqaa8qacaWGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0 Iaamiva8aadaWgaaWcbaWdbiaadogacaGGSaGaamyAaiaad6gaa8aa beaaaOWdbiaawIcacaGLPaaaaaa@4D25@

    Q =   Q M a x * E f f e c t i v e n e s s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOaiaadgfapaWaaSbaaSqaa8qacaWGnbGa amyyaiaadIhaa8aabeaak8qacaGGQaGaamyraiaadAgacaWGMbGaam yzaiaadogacaWG0bGaamyAaiaadAhacaWGLbGaamOBaiaadwgacaWG ZbGaam4Caaaa@49D1@

    T t , e x , C o l d = T t , i n , C o l d + Q W C o l d * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaam4qaiaa d+gacaWGSbGaamizaaWdaeqaaOWdbiaacQcacaWGdbGaamiCa8aada WgaaWcbaWdbiaadggacaWG2bGaam4zaiaacYcacaWGdbGaam4Baiaa dYgacaWGKbaapaqabaaaaaaa@5A23@

    T t , e x , H o t = T t , i n , H o t Q W H o t * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuaa WdaeaapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWd aeqaaOWdbiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaaaaaa@56BE@

  7. Nusselt Number vs RE_Cold vs RE_Hot

    Nusselt Number is obtained from User Defined Input for Nusselt Number as function of Reynolds Number Cold and Reynolds Number Hot

    U A =   N u s s e l t _ N u m b e r   * K D h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbGaamyqaiabg2da9iaacckadaWcaaWdaeaapeGaamOtaiaa dwhacaWGZbGaam4CaiaadwgacaWGSbGaamiDaiaac+facaWGobGaam yDaiaad2gacaWGIbGaamyzaiaadkhacaGGGcGaaiOkaiaadUeaa8aa baWdbiaadseacaWGObaaaaaa@4B84@

    N T U =   U A C m i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamivaiaadwfacqGH9aqpcaGGGcWaaSaaa8aabaWdbiaa dwfacaWGbbaapaqaa8qacaWGdbWdamaaBaaaleaapeGaamyBaiaadM gacaWGUbaapaqabaaaaaaa@40AC@

    E f f e c t i v e n e s s = 1 e ( ( 1 C R a t i o ) N T U 0.22 e ( C R a t i o N T U 0.78 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaGymai abgkHiTiaadwgapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbmaabmaa paqaa8qadaWccaWdaeaapeGaaGymaaWdaeaapeGaam4qa8aadaWgaa adbaWdbiaadkfacaWGHbGaamiDaiaadMgacaWGVbaapaqabaaaaaWc peGaayjkaiaawMcaaiaad6eacaWGubGaamyva8aadaahaaadbeqaa8 qacaaIWaGaaiOlaiaaikdacaaIYaaaaSGaamyza8aadaahaaadbeqa a8qadaqadaWdaeaapeGaeyOeI0Iaam4qa8aadaWgaaqaa8qacaWGsb GaamyyaiaadshacaWGPbGaam4BaaWdaeqaa8qacaWGobGaamivaiaa dwfapaWaaWbaaeqabaWdbiaaicdacaGGUaGaaG4naiaaiIdaaaGaey OeI0IaaGymaaGaayjkaiaawMcaaaaaaSGaayjkaiaawMcaaaaaaaa@66C4@

    C H o t =   A B S ( W H o t ) * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaGc peGaeyypa0JaaiiOaiaadgeacaWGcbGaam4uamaabmaapaqaa8qaca WGxbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaaak8qa caGLOaGaayzkaaGaaiOkaiaadoeacaWGWbWdamaaBaaaleaapeGaam yyaiaadAhacaWGNbGaaiilaiaadIeacaWGVbGaamiDaaWdaeqaaaaa @4D4C@

    C C o l d =   A B S ( W C o l d ) * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaam4qaiaad+gacaWGSbGaamizaaWd aeqaaOWdbiabg2da9iaacckacaWGbbGaamOqaiaadofadaqadaWdae aapeGaam4va8aadaWgaaWcbaWdbiaadoeacaWGVbGaamiBaiaadsga a8aabeaaaOWdbiaawIcacaGLPaaacaGGQaGaam4qaiaadchapaWaaS baaSqaa8qacaWGHbGaamODaiaadEgacaGGSaGaam4qaiaad+gacaWG SbGaamizaaWdaeqaaaaa@4FE0@

    C m i n = m i n ( C H o t ,   C C o l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWdbiaadoeapa WaaSbaaSqaa8qacaWGibGaam4Baiaadshaa8aabeaak8qacaGGSaGa aiiOaiaadoeapaWaaSbaaSqaa8qacaWGdbGaam4BaiaadYgacaWGKb aapaqabaaak8qacaGLOaGaayzkaaaaaa@4A45@

    Q M a x =   C m i n * ( T h , i n T c , i n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaamytaiaadggacaWG4baapaqabaGc peGaeyypa0JaaiiOaiaadoeapaWaaSbaaSqaa8qacaWGTbGaamyAai aad6gaa8aabeaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSba aSqaa8qacaWGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0 Iaamiva8aadaWgaaWcbaWdbiaadogacaGGSaGaamyAaiaad6gaa8aa beaaaOWdbiaawIcacaGLPaaaaaa@4D25@

    Q =   Q M a x * E f f e c t i v e n e s s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOaiaadgfapaWaaSbaaSqaa8qacaWGnbGa amyyaiaadIhaa8aabeaak8qacaGGQaGaamyraiaadAgacaWGMbGaam yzaiaadogacaWG0bGaamyAaiaadAhacaWGLbGaamOBaiaadwgacaWG ZbGaam4Caaaa@49D1@

    T t , e x , C o l d = T t , i n , C o l d + Q W C o l d * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaam4qaiaa d+gacaWGSbGaamizaaWdaeqaaOWdbiaacQcacaWGdbGaamiCa8aada WgaaWcbaWdbiaadggacaWG2bGaam4zaiaacYcacaWGdbGaam4Baiaa dYgacaWGKbaapaqabaaaaaaa@5A23@

    T t , e x , H o t = T t , i n , H o t Q W H o t * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuaa WdaeaapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWd aeqaaOWdbiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaaaaaa@56BE@

  8. Constant hA Coefficient value

    C H o t =   A B S ( W H o t ) * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaGc peGaeyypa0JaaiiOaiaadgeacaWGcbGaam4uamaabmaapaqaa8qaca WGxbWdamaaBaaaleaapeGaamisaiaad+gacaWG0baapaqabaaak8qa caGLOaGaayzkaaGaaiOkaiaadoeacaWGWbWdamaaBaaaleaapeGaam yyaiaadAhacaWGNbGaaiilaiaadIeacaWGVbGaamiDaaWdaeqaaaaa @4D4C@

    C C o l d =   A B S ( W C o l d ) * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaam4qaiaad+gacaWGSbGaamizaaWd aeqaaOWdbiabg2da9iaacckacaWGbbGaamOqaiaadofadaqadaWdae aapeGaam4va8aadaWgaaWcbaWdbiaadoeacaWGVbGaamiBaiaadsga a8aabeaaaOWdbiaawIcacaGLPaaacaGGQaGaam4qaiaadchapaWaaS baaSqaa8qacaWGHbGaamODaiaadEgacaGGSaGaam4qaiaad+gacaWG SbGaamizaaWdaeqaaaaa@4FE0@

    C m i n = m i n ( C H o t ,   C C o l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWdbiaadoeapa WaaSbaaSqaa8qacaWGibGaam4Baiaadshaa8aabeaak8qacaGGSaGa aiiOaiaadoeapaWaaSbaaSqaa8qacaWGdbGaam4BaiaadYgacaWGKb aapaqabaaak8qacaGLOaGaayzkaaaaaa@4A45@

    1 U A = ( 1 h * A ) C o l d + ( 1 h * A ) H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyvaiaadgeaaaGaeyyp a0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGOb acbaGaa8NkaiaadgeaaaaacaGLOaGaayzkaaWdamaaBaaaleaapeGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaabmaapa qaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiAaiaa=PcacaWG bbaaaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaadIeacaWGVbGaam iDaaWdaeqaaaaa@4BEF@

    NTU Effectiveness Methods:
    1. Cross Flow Unmixed

      E f f e c t i v e n e s s = 1 e ( ( 1 C R a t i o ) N T U 0.22 e ( C R a t i o N T U 0.78 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaGymai abgkHiTiaadwgapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbmaabmaa paqaa8qadaWccaWdaeaapeGaaGymaaWdaeaapeGaam4qa8aadaWgaa adbaWdbiaadkfacaWGHbGaamiDaiaadMgacaWGVbaapaqabaaaaaWc peGaayjkaiaawMcaaiaad6eacaWGubGaamyva8aadaahaaadbeqaa8 qacaaIWaGaaiOlaiaaikdacaaIYaaaaSGaamyza8aadaahaaadbeqa a8qadaqadaWdaeaapeGaeyOeI0Iaam4qa8aadaWgaaqaa8qacaWGsb GaamyyaiaadshacaWGPbGaam4BaaWdaeqaa8qacaWGobGaamivaiaa dwfapaWaaWbaaeqabaWdbiaaicdacaGGUaGaaG4naiaaiIdaaaGaey OeI0IaaGymaaGaayjkaiaawMcaaaaaaSGaayjkaiaawMcaaaaaaaa@66C4@

    2. Counter Flow

      E f f e c t i v e n e s s =   1 e N T U ( 1 C R a t i o ) 1 C R a t i o e N T U ( 1 C R a t i o ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaiiOam aalaaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qa cqGHsislcaWGobGaamivaiaadwfadaqadaWdaeaapeGaaGymaiabgk HiTiaadoeapaWaaSbaaWqaa8qacaWGsbGaamyyaiaadshacaWGPbGa am4BaaWdaeqaaaWcpeGaayjkaiaawMcaaaaaaOWdaeaapeGaaGymai abgkHiTiaadoeapaWaaSbaaSqaa8qacaWGsbGaamyyaiaadshacaWG PbGaam4BaaWdaeqaaOWdbiaadwgapaWaaWbaaSqabeaapeGaeyOeI0 IaamOtaiaadsfacaWGvbWaaeWaa8aabaWdbiaaigdacqGHsislcaWG dbWdamaaBaaameaapeGaamOuaiaadggacaWG0bGaamyAaiaad+gaa8 aabeaaaSWdbiaawIcacaGLPaaaaaaaaaaa@693D@

    3. Parallel Flow

      E f f e c t i v e n e s s =   1 e N T U ( 1 + C R a t i o ) 1 + C R a t i o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaiiOam aalaaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qa cqGHsislcaWGobGaamivaiaadwfadaqadaWdaeaapeGaaGymaiabgU caRiaadoeapaWaaSbaaWqaa8qacaWGsbGaamyyaiaadshacaWGPbGa am4BaaWdaeqaaaWcpeGaayjkaiaawMcaaaaaaOWdaeaapeGaaGymai abgUcaRiaadoeapaWaaSbaaSqaa8qacaWGsbGaamyyaiaadshacaWG PbGaam4BaaWdaeqaaaaaaaa@5B3E@

    4. Cross Flow Both Side Mixed

      E f f e c t i v e n e s s =   1 1 ( 1 e _ N T U ) + C R a t i o 1 e C R a t i o N T U 1 N T U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaiiOam aalaaapaqaa8qacaaIXaaapaqaa8qadaWcaaWdaeaapeGaaGymaaWd aeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaale qabaWdbiaac+facaWGobGaamivaiaadwfaaaaakiaawIcacaGLPaaa aaGaey4kaSYaaSaaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGsb GaamyyaiaadshacaWGPbGaam4BaaWdaeqaaaGcbaWdbiaaigdacqGH sislcaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadoeapaWaaSbaaW qaa8qacaWGsbGaamyyaiaadshacaWGPbGaam4BaaWdaeqaaSWdbiaa d6eacaWGubGaamyvaaaaaaGccqGHsisldaWcaaWdaeaapeGaaGymaa WdaeaapeGaamOtaiaadsfacaWGvbaaaaaaaaa@65C0@

    5. Cross Flow One Side Mixed

      Cmin is mixed: E f f e c t i v e n e s s = 1 e ( 1 C R a t i o ) ( 1 e C R a t i o N T U ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaGymai abgkHiTiaadwgapaWaaWbaaSqabeaapeGaeyOeI0YaaeWaa8aabaWd bmaaliaapaqaa8qacaaIXaaapaqaa8qacaWGdbWdamaaBaaameaape GaamOuaiaadggacaWG0bGaamyAaiaad+gaa8aabeaaaaaal8qacaGL OaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCa aameqabaWdbiabgkHiTiaadoeapaWaaSbaaeaapeGaamOuaiaadgga caWG0bGaamyAaiaad+gaa8aabeaapeGaamOtaiaadsfacaWGvbaaaa WccaGLOaGaayzkaaaaaaaa@5D17@

      Cmax is mixed: E f f e c t i v e n e s s =   ( 1 C R a t i o ) ( 1 e ( C R a t i o ( 1 e _ N T U ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaaeaaaaaa aaa8qacaWFfbGaa8Nzaiaa=zgacaWFLbGaa83yaiaa=rhacaWFPbGa a8NDaiaa=vgacaWFUbGaa8xzaiaa=nhacaWFZbGaeyypa0JaaiiOam aabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4qa8aa daWgaaWcbaWdbiaadkfacaWGHbGaamiDaiaadMgacaWGVbaapaqaba aaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaeyOeI0Ia amyza8aadaahaaWcbeqaa8qacqGHsisldaqadaWdaeaapeGaam4qa8 aadaWgaaadbaWdbiaadkfacaWGHbGaamiDaiaadMgacaWGVbaapaqa baWcpeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaame qabaWdbiaac+facaWGobGaamivaiaadwfaaaaaliaawIcacaGLPaaa aiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaaa@619E@

      Q M a x =   C m i n * ( T h , i n T c , i n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaamytaiaadggacaWG4baapaqabaGc peGaeyypa0JaaiiOaiaadoeapaWaaSbaaSqaa8qacaWGTbGaamyAai aad6gaa8aabeaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSba aSqaa8qacaWGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0 Iaamiva8aadaWgaaWcbaWdbiaadogacaGGSaGaamyAaiaad6gaa8aa beaaaOWdbiaawIcacaGLPaaaaaa@4D25@

      Q =   Q M a x * E f f e c t i v e n e s s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOaiaadgfapaWaaSbaaSqaa8qacaWGnbGa amyyaiaadIhaa8aabeaak8qacaGGQaGaamyraiaadAgacaWGMbGaam yzaiaadogacaWG0bGaamyAaiaadAhacaWGLbGaamOBaiaadwgacaWG ZbGaam4Caaaa@49D1@

      T t , e x , C o l d = T t , i n , C o l d + Q W C o l d * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaam4qaiaa d+gacaWGSbGaamizaaWdaeqaaOWdbiaacQcacaWGdbGaamiCa8aada WgaaWcbaWdbiaadggacaWG2bGaam4zaiaacYcacaWGdbGaam4Baiaa dYgacaWGKbaapaqabaaaaaaa@5A23@

      T t , e x , H o t = T t , i n , H o t Q W H o t * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuaa WdaeaapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWd aeqaaOWdbiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaaaaaa@56BE@

  9. Hs Parameter Methods (Constant and vs Hot and Cold Flowrates)

    The Hs parameter is typically used to describe radiators where the hot side is a liquid coolant, and the cold side is air.

    H s = A B S ( W H o t ) * C p a v g , H o t * ( T h , i n T h , e x ) H X A r e a * ( T h , i n T c , i n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaWGbbGaamOqaiaadofadaqadaWdaeaapeGaam4va8 aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWdaeqaaaGcpeGaayjk aiaawMcaaiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaak8qacaGG QaWaaeWaa8aabaWdbiaadsfapaWaaSbaaSqaa8qacaWGObGaaiilai aadMgacaWGUbaapaqabaGcpeGaeyOeI0Iaamiva8aadaWgaaWcbaWd biaadIgacaGGSaGaamyzaiaadIhaa8aabeaaaOWdbiaawIcacaGLPa aaa8aabaWdbiaadIeacaWGybWdamaaBaaaleaapeGaamyqaiaadkha caWGLbGaamyyaaWdaeqaaOWdbiaacQcadaqadaWdaeaapeGaamiva8 aadaWgaaWcbaWdbiaadIgacaGGSaGaamyAaiaad6gaa8aabeaak8qa cqGHsislcaWGubWdamaaBaaaleaapeGaam4yaiaacYcacaWGPbGaam OBaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaaa@6A31@

    H s * H X A r e a * ( T h , i n T c , i n ) = A B S ( W H o t ) * C p a v g , H o t * ( T h , i n T h , e x ) = Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaacQcacaWG ibGaamiwa8aadaWgaaWcbaWdbiaadgeacaWGYbGaamyzaiaadggaa8 aabeaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSbaaSqaa8qa caWGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0Iaamiva8 aadaWgaaWcbaWdbiaadogacaGGSaGaamyAaiaad6gaa8aabeaaaOWd biaawIcacaGLPaaacqGH9aqpcaWGbbGaamOqaiaadofadaqadaWdae aapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWdaeqa aaGcpeGaayjkaiaawMcaaiaacQcacaWGdbGaamiCa8aadaWgaaWcba WdbiaadggacaWG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aa beaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSbaaSqaa8qaca WGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0Iaamiva8aa daWgaaWcbaWdbiaadIgacaGGSaGaamyzaiaadIhaa8aabeaaaOWdbi aawIcacaGLPaaacqGH9aqpcaWGrbaaaa@6C6D@

    A heat exchanger effectiveness can be calculated using the Hs parameter.

    E f f e c t i v e n e s s = Q   /   Q M a x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbGaamOzaiaadAgacaWGLbGaam4yaiaadshacaWGPbGaamOD aiaadwgacaWGUbGaamyzaiaadohacaWGZbGaeyypa0Jaamyuaiaacc kacaGGVaGaaiiOaiaadgfapaWaaSbaaSqaa8qacaWGnbGaamyyaiaa dIhaa8aabeaaaaa@4AE0@

    Q M a x =   C m i n * ( T h , i n T c , i n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaamytaiaadggacaWG4baapaqabaGc peGaeyypa0JaaiiOaiaadoeapaWaaSbaaSqaa8qacaWGTbGaamyAai aad6gaa8aabeaak8qacaGGQaWaaeWaa8aabaWdbiaadsfapaWaaSba aSqaa8qacaWGObGaaiilaiaadMgacaWGUbaapaqabaGcpeGaeyOeI0 Iaamiva8aadaWgaaWcbaWdbiaadogacaGGSaGaamyAaiaad6gaa8aa beaaaOWdbiaawIcacaGLPaaaaaa@4D25@

    E f f e c t i v e n e s s = H s * H X A r e a * ( T h , i n T c , i n ) C m i n * ( T h , i n T c , i n ) = H s * H X A r e a C m i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbGaamOzaiaadAgacaWGLbGaam4yaiaadshacaWGPbGaamOD aiaadwgacaWGUbGaamyzaiaadohacaWGZbGaeyypa0ZaaSaaa8aaba WdbiaadIeapaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaaiOkaiaa dIeacaWGybWdamaaBaaaleaapeGaamyqaiaadkhacaWGLbGaamyyaa WdaeqaaOWdbiaacQcadaqadaWdaeaapeGaamiva8aadaWgaaWcbaWd biaadIgacaGGSaGaamyAaiaad6gaa8aabeaak8qacqGHsislcaWGub WdamaaBaaaleaapeGaam4yaiaacYcacaWGPbGaamOBaaWdaeqaaaGc peGaayjkaiaawMcaaaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaad2 gacaWGPbGaamOBaaWdaeqaaOWdbiaacQcadaqadaWdaeaapeGaamiv a8aadaWgaaWcbaWdbiaadIgacaGGSaGaamyAaiaad6gaa8aabeaak8 qacqGHsislcaWGubWdamaaBaaaleaapeGaam4yaiaacYcacaWGPbGa amOBaaWdaeqaaaGcpeGaayjkaiaawMcaaaaacqGH9aqpdaWcaaWdae aapeGaamisa8aadaWgaaWcbaWdbiaadohaa8aabeaak8qacaGGQaGa amisaiaadIfapaWaaSbaaSqaa8qacaWGbbGaamOCaiaadwgacaWGHb aapaqabaaakeaapeGaam4qa8aadaWgaaWcbaWdbiaad2gacaWGPbGa amOBaaWdaeqaaaaaaaa@777D@

    Q is found using the effectiveness Qmax. The Q is applied to the fluid streams to get the exit temperatures.

    T t , e x , C o l d = T t , i n , C o l d + Q W C o l d * C p a v g , C o l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGdbGaam4BaiaadYgacaWGKbaapaqabaGcpeGaeyypa0Jaam iva8aadaWgaaWcbaWdbiaadshacaGGSaGaamyAaiaad6gacaGGSaGa am4qaiaad+gacaWGSbGaamizaaWdaeqaaOWdbiabgUcaRmaalaaapa qaa8qacaWGrbaapaqaa8qacaWGxbWdamaaBaaaleaapeGaam4qaiaa d+gacaWGSbGaamizaaWdaeqaaOWdbiaacQcacaWGdbGaamiCa8aada WgaaWcbaWdbiaadggacaWG2bGaam4zaiaacYcacaWGdbGaam4Baiaa dYgacaWGKbaapaqabaaaaaaa@5A23@

    T t , e x , H o t = T t , i n , H o t Q W H o t * C p a v g , H o t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamiDaiaacYcacaWGLbGaamiEaiaa cYcacaWGibGaam4Baiaadshaa8aabeaak8qacqGH9aqpcaWGubWdam aaBaaaleaapeGaamiDaiaacYcacaWGPbGaamOBaiaacYcacaWGibGa am4Baiaadshaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaamyuaa WdaeaapeGaam4va8aadaWgaaWcbaWdbiaadIeacaWGVbGaamiDaaWd aeqaaOWdbiaacQcacaWGdbGaamiCa8aadaWgaaWcbaWdbiaadggaca WG2bGaam4zaiaacYcacaWGibGaam4Baiaadshaa8aabeaaaaaaaa@56BE@

Note: Bi-Linear interpolation is employed between the values in the table to determine Y Values. If X-Value is less than its first value entry in the table, the first Y-Value entry is used. If X-Value is greater than its last value entry in the table, the last Y-Value entry is used. Flow Simulator doesn’t do any extrapolation if the values are outside the prescribed input limits.

Generic Heat Exchanger Outputs

The following listing provides details about Generic Heat Exchanger Component output variables.

Name Description Units
PS Static pressure psia, MPa
PT Total pressure psia, MPa
TT Total temperature of fluid deg F, deg K
RE Reynold Number (None)
Rho Density lbm/ft^3, Kg/m^3
CP Specific Heat Btu/(Lbm R), kJ/Kg.K
K Thermal Conductivity Btu/(hr ft R), W/m.K
DVISC Dynamic Viscosity Lbm/(hr ft), N s/m^2
Area Flow Area In2, m2
Heat Mode

Heat Mode Options (An echo of the user input)

  1. Heat Input
  2. Hot Fluid Delta.T
  3. Cold Fluid Delta.T
  4. Effectiveness
  5. Effectiveness vs Flow_Rate_Cold vs Flow_Rate_Hot
  6. Effectiveness vs NTU vs Heat Capacity Ratio
  7. Nusselt Number vs RE_Cold vs RE_Hot
  8. Constant hA coefficient value
(None)
Pri/cold_side_ploss_opt

Options specified for Pressure Loss Modelling for Pri/Cold side

  1. Fixed Loss Coefficient
  2. Fixed Total Pressure Drop
  3. Flow vs Delta.P (PTIN – PSEX)
  4. Velocity vs Delta.P (PTIN – PSEX)
  5. Loss Coefficient vs Reynolds Number

(An echo of the user input)

(None)
Sec/hot_side_ploss_opt

Options specified for Pressure Loss Modelling for Sec/Hot side

  1. Fixed Loss Coefficient
  2. Fixed Total Pressure Drop
  3. Flow vs Delta.P (PTIN – PSEX)
  4. Velocity vs Delta.P (PTIN – PSEX)
  5. Loss Coefficient vs Reynolds Number

(An echo of the user input)

(None)
Q Heat Transferred between Heat Exchanger fluids. BTU/sec, W
Effectiveness Effectiveness of Heat Exchanger (None)
Pri/cold_side_delta.p Delta.PT on Pri/Cold side flow psia, MPa
Sec/hot_side_delta.p Delta.PT on Sec/Hot side flow psia, MPa
Mdot Mass Flow Rate Lbm/s, kg/s
Flow configuration

Heat Exchangers Flow Configurations

  1. Parallel Flow
  2. Counter Flow
  3. Shell & Tube
  4. Cross flow both flows unmixed
  5. Cross flow One fluid mixed

(An echo of the user input)

(None)
Overall conductance(UA) Overall Thermal Resistance BTU/hr.F, W/K
NTU No of Transfer Units (None)
Pri_hA_out Pri/Cold side flow hA Coefficient value BTU/hr.F, W/K
Sec_hA_out Sec/Hot side flow hA Coefficient value BTU/hr.F, W/K