Spring TYPE12 - Pulley (/PROP/SPR_PUL)

Spring TYPE12 is used to model a pulley. When used in a seat belt model, it is defined with three nodes.

Node 2 is located at the pulley, and a deformable rope is joining the three nodes (Figure 1). The spring mass is distributed on the three nodes with ¼ at node 1 and node 3 and ½ at node 2.

A Coulomb friction can be applied at node 2, taking into account the angle between the two strands. Without friction, forces are computed as:(1)
| F 1 |=| F 2 |=Kδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaai aahAeadaWgaaWcbaGaaGymaaqabaaakiaawEa7caGLiWoacqGH9aqp daabdaqaaiaahAeadaWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiW oacqGH9aqpcaWGlbGaeqiTdqgaaa@44A4@
With,
δ
Total rope elongation
K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@372E@
Stiffness
If the Coulomb friction is used, forces are computed as:(2)
F f r = min { | Δ F | , max [ 0 , ( | F 1 | + | F 2 | ) tanh ( β μ 2 ) ] } s i g ( Δ F ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaahAeadaWgaaWcbaGaamOzaiaadkhaaeqaaOGaeyypa0JaciyB aiaacMgacaGGUbWaaiWaaeaadaabdaqaaiaabs5acaWHgbaacaGLhW UaayjcSdGaaiilaiGac2gacaGGHbGaaiiEamaadmaabaGaaGimaiaa cYcadaqadaqaamaaemaabaGaaCOramaaBaaaleaacaaIXaaabeaaaO Gaay5bSlaawIa7aiabgUcaRmaaemaabaGaaCOramaaBaaaleaacaaI YaaabeaaaOGaay5bSlaawIa7aaGaayjkaiaawMcaaiabgwSixlGacs hacaGGHbGaaiOBaiaacIgadaqadaqaamaalaaabaGaeqOSdiMaeyyX ICTaeqiVd0gabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawUfacaGLDb aaaiaawUhacaGL9baacqGHflY1caWGZbGaamyAaiaadEgadaqadaqa aiaabs5acaWHgbaacaGLOaGaayzkaaaaaa@6E15@
Where,
μ= f fr ( ΔF Xscale_F )Yscale_F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaciOzamaaBaaaleaacaWGMbGaamOCaaqabaGcdaqadaqaamaa laaabaGaaeiLdiaadAeaaeaacaWGybGaam4CaiaadogacaWGHbGaam iBaiaadwgacaGGFbGaamOraaaaaiaawIcacaGLPaaacqGHflY1caWG zbGaam4CaiaadogacaWGHbGaamiBaiaadwgacaGGFbGaamOraaaa@4FD7@
β
Angle (radians unit)
f fr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOzamaaBa aaleaacaWGMbGaamOCaaqabaaaaa@38F0@
Function of fct_IDfr
  • Ifr =0 (symmetrical behavior)(3)
    ΔF=| F 1 F 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WHgbGaeyypa0ZaaqWaaeaacaWHgbWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaaCOramaaBaaaleaacaaIYaaabeaaaOGaay5bSlaawIa7aa aa@4129@
  • Ifr =1 (non-symmetrical behavior)(4)
    ΔF= F 1 F 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WHgbGaeyypa0JaaCOramaaBaaaleaacaaIXaaabeaakiabgkHiTiaa hAeadaWgaaWcbaGaaGOmaaqabaaaaa@3DFD@
δ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda WgaaWcbaGaaGymaaqabaaaaa@38EA@ is the elongation of strand 1-2 and δ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda WgaaWcbaGaaGymaaqabaaaaa@38EA@ of strand 2-3.


Figure 1. Spring TYPE12, Pulley
Time step is computed with the same equation that for spring TYPE4, but the stiffness is replaced with twice the stiffness to ensure stability with high friction coefficients.
Note: The two strands have to be long enough to avoid node 1, or node 3 slides up to node 2. Nodes 1 and 3 will be stopped at node 2, if there is a knot at nodes 1 and 3.


Figure 2. Spring TYPE12, Locking

For further information, refer to the Radioss Theory Manual.