Materials

The different material types provided by OptiStruct are: isotropic, orthotropic, and anisotropic materials. The material property definition cards are used to define the properties for each of the materials used in a structural model.

The MAT1 Bulk Data Entry is used to define the properties for isotropic elastic materials. It can be referenced by any of the structural elements and can also be referenced by any property card.

The MAT2 entry is used to define the properties for anisotropic materials. It applies only to triangular or quadrilateral membrane and bending elements, and can only be referenced by PSHELL, PCOMP, and PCOMPG property cards. This material type specifies the relationship between the in-plane stresses and strains. The angle between the material coordinate system and the element coordinate system is specified on the connection cards.

The MAT3 entry is used to define the material properties for axisymmetric and plane-strain elements. It can be referenced by CTRIAX6 elements and can also be referenced by any PAXI property card which is in turn referenced on CTAXI or CQAXI elements. Similarly, it can be referenced by the PPLANE property which is referenced by plane-strain CQPSTN and CTPSTN elements.

The MAT4 entry is used to define the isotropic thermal material properties. It can be referenced by any of the structural elements, and can also be referenced by any property card.

The MAT5 entry is used to define the anisotropic thermal material properties. It can be referenced by any of the structural elements and can also be referenced by any property card.

The MAT8 card is used to define the properties for planar orthotropic elastic materials in two dimensions. Individual plys of a layered composite lay-up typically possess such orthotropic properties. Since layered composite laminates are modeled using shell elements, MAT8 property data can only be referenced by PSHELL, PCOMP, and PCOMPG property cards.

The MAT9 Bulk Data Entry can be used to define the properties for anisotropic elastic materials for three dimensional solid elements. The general an-isotropic stress-strain relationship linking the six independent stress components of the stress tensor at a point and the six independent strain components of the tensor at the point contain 21 independent constants in the elasticity matrix. These values are supplied using the MAT9 Bulk Data card. The MAT9 Bulk Data card is used with the CHEXA, CPENTA, CPYRA, and CTETRA solid elements, and can only be referenced on the PSOLID property card. The optional coordinate system in which MAT9 data are specified is supplied via the PSOLID Bulk Data Entry.

The MAT10 Bulk Data Entry is used to define material properties for fluid elements in coupled fluid-structural (acoustic) analysis. It may only be referenced on PSOLID entries with FCTN=PFLUID.

Biot (poroelastic) material is defined using MATPE1 entry.

Temperature dependent material properties are defined using MATT1, MATT2, MATT8, and MATT9. All four have the same characteristics as described above. The temperature dependency of each property is defined through TABLEM1, TABLEM2, TABLEM3, or TABLEM4 table entries.

Composite Laminates are defined using the PCOMP, PCOMPP and PCOMPG properties. They are not material types; each ply in the laminate lay-up can reference a different material.

Elasto-plastic material properties are defined using MATS1. The nonlinear material characteristics may need the table input TABLES1. MATS1 is defined as an extension to a MAT1 with the same MID. MATS1 is applicable to all nonlinear solutions.

Hyperelastic material properties are defined using MATHE. Various Hyperelastic material models are available, such are Ogden, Arruda-Boyce, and so on.

Viscoelastic material properties are defined using MATVE or MATFVE, if frequency-dependency is required.

Creep material properties are defined using MATVP.

Cohesive Zone Modeling can be defined using MCOHE or MCOHED entries.

Cast Iron Plasticity material can be defined using MCIRON Bulk Data Entry.

User-defined structural material properties are available using MATUSR. .dll or .so libraries can be referenced via the LOADLIB entry. For more information, refer to User-Defined Structural Material in the User Guide.

User-defined thermal material properties are available using MATUSHT. .dll or .so libraries can be referenced via the LOADLIB entry.

Material models can also be defined using Multiscale Designer and used via the MATMDS entry.

For explicit dynamic subcases (with Radioss integration), more nonlinear material laws are available. As a general rule, material definitions that are only applicable in explicit dynamic analysis are defined on extensions to a MAT1 material that defines the basic elastic properties. The extensions are grouped with the base entry by sharing the same MID. The MATXyx extensions available are listed below. If a law requires material curves, TABLES1 entries are used.
Table 1. Implicit Analysis
Material Property Nonlinearity Time-dependency Temperature-dependency Frequency-dependency Material Card
Isotropic - - - - MAT1
- - - Yes MAT1 + MATF1
- - Yes - MAT1 + MATT1
Elasto-plasticity - - - MAT1 + MATS1
Elasto-plasticity - Yes - MAT1 + MATS1 (referencing TABLEST)
Hyperelasticity - - - MATHE
Viscoelasticity - - - MAT1 + MATVE
Viscoelasticity - - Yes MAT1 + MATFVE
Viscoelasticity, Hyperelasticity - - - MATHE + MATVE
Creep - - - MAT1 + MATVP
Creep, Elasto-plasticity - - - MAT1 + MATVP + MATS1
Creep - Yes - MAT1 + MATVP + MATTVP
Anisotropic - - - - MAT9 (solid elements)

MAT2 (shell elements)

- - - Yes MAT9 + MATF9 (solid elements)

MAT2 + MATF2 (shell elements)

- - Yes - MAT9 + MATT9 (solid elements)

MAT2 + MATT2 (shell elements)

Viscoelasticity - - - MAT9 + MATVE
Viscoelasticity - - Yes MAT9 + MATFVE
Orthotropic - - - - MAT9OR (solid elements)

MAT8 (shell elements)

MAT3 (axisymmetric and plane strain elements)

- - - Yes MAT8 + MATF8 (shell elements)

MAT3 + MATF3 (axisymmetric and plane strain elements)

- - Yes - MAT9OR + MATT9OR (solid elements)

MAT8 + MATT8 (shell elements)

MAT3 + MATT3 (axisymmetric and plane strain elements)

Fluid - - - - MAT10
- - - Yes MAT10 + MATF10
Thermal - - - - MAT4 (Isotropic)

MAT5 (Anisotropic)

Yes (Temperature) - Yes - MAT4 + MATT4 (Isotropic)
Gasket - - Yes - MGASK
Fatigue - - - - MATFAT
Biot (Poroelasticity) - - - - MATPE1
User-Defined Structural Material Subroutines Yes Yes Yes - MATUSR (Fortran and C for subroutines)
User-Defined Thermal Material Subroutines Yes (Temperature) Yes Yes - MATUSHT (Fortran and C for subroutines)
Multiscale Designer-based Material Yes - - - MATMDS (using Altair Multiscale Designer).
Failure Criteria - - - - Criteria and Allowables on MATF

Criteria/Allowables can also be defined on MAT1, MAT2, MAT8, PCOMP, PCOMPP, PCOMPG

Table 2. Explicit Dynamic Analysis
Material Property Nonlinearity Time-dependency Temperature-dependency Frequency-dependency Material Card
Isotropic - - - - MAT1
Elasto-plasticity - - - MAT1 + MATS1
Hyperelasticity - - - MATHE
Viscoelasticity - - - MAT1 + MATVE
Viscoelasticity, Hyperelasticity - - - MATHE + MATVE
Anisotropic - - - - MAT2 (shell elements)
Viscoelasticity - - - MAT9 + MATVE
Orthotropic - - - - MAT8 (shell elements)

For explicit dynamic subcases (with Radioss integration), more nonlinear material laws are available. As a general rule, material definitions that are only applicable in explicit dynamic analysis are defined on extensions to a MAT1 material that defines the basic elastic properties. The extensions are grouped with the base entry by sharing the same MID. The MATXyz extensions available are listed below. If a law requires material curves, TABLES1 entries are used.

Explicit Dynamic Analysis (Radioss Integration via ANALYSIS=EXPDYN)

Material Card
Description
MATX0
Void material
MATX02
Johnson-Cook elastic-plastic material
MATX13
Rigid material
MATX21
Rock-Concrete material
MATX25
Composite shell material, TSAI-WU and CRASURV formulations
MATX27
Brittle elastic-plastic material
MATX28
Honeycomb material
MATX33
Visco-elastic foam material
MATX36
Piece-wise linear elastic-plastic material
MATX42
Ogden-Mooney and Rivlin material
MATX43
Hill orthotropic material
MATX44
Cowper-Symonds elastic-plastic material
MATX60
Piece-wise nonlinear elastic-plastic material
MATX62
Hyper-visco-elastic material
MATX65
Tabulated strain-rate dependent elastic-plastic material
MATX68
Honeycomb material
MATX70
Tabulated visco-elastic foam material
MATX82
Ogden material

User-Defined Structural Material

The MATUSR Bulk Data Entry, in combination with the LOADLIB I/O Option Entry, allows for the definition of structural material through user-defined external functions.

The external functions may be written in Fortran or C. The resulting libraries and files should be accessible by OptiStruct regardless of the coding language, provided that consistent function prototyping is respected, and adequate compiling and linking options are used.

Write External Functions

The OptiStruct installation provides an example file with subroutines for Fortran (umat.F) with proper subroutine definition, arguments, and compilation directives. This file can be used as a starting point to write your own subroutines. This file is located at $ALTAIR_HOME/hwsolvers/demos/optistruct.

Two Fortran subroutines are required to define user material in OptiStruct. First, a Nonlinear subroutine for the nonlinear solution, and another subroutine for the linear solution. Both subroutines are mandatory, and the same argument order should be followed as:

Nonlinear subroutine:
subroutine usermaterial(idu, stress, strain, dstrain, stater,
 state, nstate, drot, props, nprops, 
 temp, dtemp, ieuid, kinc, dt, t_step,
 t_total, cdev, cbulk)

integer idu, nstate, nprops, kinc, ieuid
double precision stress(6),stater(*),state(*),
     $     cdev(6,6),cbulk, drot(3,3), temp, dtemp, dt, 
     $     t_step, t_total,
     $     strain(6), dstrain(6), props(nprops)
Linear subroutine:
subroutine smatusr(idu, nprop, prop, smat)
integer idu, nprop
double precision prop(nprop), smat(*)
Note: It is important that both subroutines be named “usermaterial” and “smatusr”, respectively.

Subroutine Arguments

The following table briefly describes the arguments which are passed among OptiStruct and the external subroutines. OptiStruct calls these two subroutines for every integration point of every element in the model. Therefore, the values listed below are calculated at each integration point.
Argument Type Input / Output Description
idu integer Input This is defined via the USUBID parameter on the MATUSR Bulk Data Entry. This argument can be used to define and choose between different types of materials within the same user subroutine.

optional use

stress double (table) Input/Output This is the Stress tensor. The initial stress is considered to be input and the stress, tensor calculated during the nonlinear solution are output from the user subroutine to OptiStruct.
strain double (table) Input Strain tensor. The initial strain is considered to be input.
dstrain double (table) Input Incremental strain table. The incremental strain is input from OptiStruct to the user subroutine.
stater double (table) Input/Output Table of State variables at the previous increment. State variables are variables that can be requested as output in the H3D file. Any variable (for example, plastic strain, equivalent plastic strain, and so on) calculated within the solution process in the subroutine can be output by defining it as a state variable.
state double (table) Input/Output Table of State variables at the current increment. See stater for more information.
nstate integer Input/Output Number of State Variables that the user requires in the subroutine. See stater for more information.
props double (table) Input This table contains all the user-defined material property information from the PROPERTY continuation line of the MATUSR entry.
nprops Integer Input This is the total number of material properties defined on the PROPERTY continuation line of the MATUSR entry.
temp double Input This is the temperature at the previous converged increment.
dtemp double Input This is the temperature increment.
ieuid integer Input Element ID. This subroutine is called for every integration point for every element.
kinc integer Input Current increment.
dt double Input Current Time increment
t_step double Input Subcase time.
t_total double Input Total time (if CNTNLSUB is used)
cdev double (table) Output Deviatoric material modulus matrix. These are calculated during the solution and are output to OptiStruct to form the stiffness matrix.
cbulk double (table) Output Bulk material modulus Matrix. These are calculated during the solution and are output to OptiStruct to form the stiffness matrix.
smat Double (table) Output Material modulus matrix. These are calculated during the solution and are output to OptiStruct to form the stiffness matrix.

Build External Libraries for User-defined Materials

Allows building shared libraries on Windows or Linux.

Refer to Build External Libraries for more information.

User-Defined Thermal Material

The MATUSHT Bulk Data Entry, in combination with the LOADLIB I/O Option Entry, allows for the definition of thermal material through user-defined external functions.

The external functions may be written in Fortran or C. The resulting libraries and files should be accessible by OptiStruct regardless of the coding language, provided that consistent function prototyping is respected, and adequate compiling and linking options are used.

Write External Functions

The OptiStruct installation provides an example file with subroutines for Fortran (userlmat.F) with proper subroutine definition, arguments, and compilation directives. This file can be used as a starting point to write your own subroutines. It is located at $ALTAIR_HOME/hwsolvers/demos/optistruct.

Subroutine:
subroutine usrmatht(idu, matID, ieuid, Stater, State,
 nState, drot, rmat, nprops, etempmat, 
 dtemp, kinc, dt, t_step, hgen, smat)

integer*8 i, idu, matID, ieuid, nState, nprops, kinc
      double precision Stater(nState), State(nState)
      double precision drot(3,3), rmat(nprops)
      double precision etempmat, dtemp, dt, t_step
      double precision hgen, smat(*)

Subroutine Arguments

The following table briefly describes the arguments which are passed among OptiStruct and the external subroutines. OptiStruct calls these subroutines for every integration point of every element in the model. Therefore, the values listed below are calculated at each integration point.
Argument Type Input / Output Description
idu integer Input This is defined via the USUBID parameter on the MATUSHT Bulk Data Entry. This argument can be used to define and choose between different types of materials within the same user subroutine.

optional use

matID Integer Input Material ID.
ieuid integer Input Element ID. This subroutine is called for every integration point for every element.
drot(3,3) Double (table) Input Transformation matrix.
props double (table) Input This table contains all the user-defined thermal material property information from the PROPERTY continuation line of the MATUSHT entry.
nprops Integer Input This is the total number of thermal material properties defined on the PROPERTY continuation line of the MATUSHT entry.
temp double Input This is the temperature at the end of the current increment.
dtemp double Input This is the temperature increment of the current increment.
kinc integer Input Current nonlinear increment.
dt double Input Current time step increment
t_step double Input Current subcase time of the current time step.
Stater double (table) Input/Output Table of State variables at the last converged time-step. They are constant between iterations of the same time step. State variables are variables that can be requested as output in the H3D file. Any variable calculated within the solution process in the subroutine can be output by defining it as a state variable.
State double (table) Input/Output Table of State variables at the current time-step. They are updated and passed between iterations of the same time-step. See Stater for more information.
nState integer Input/Output Number of State Variables that the user requires in the subroutine. See Stater for more information.
hgen double (table) Output Generated heat at the integration point.
smat Double (table) Output Material matrix. These are calculated during the solution and are output to OptiStruct. Format for smat matrix is provided below.
smat(1): KXX Thermal Conductivity
smat(2): KXY Thermal Conductivity
smat(3): KXZ Thermal Conductivity
smat(4): KYY Thermal Conductivity
smat(5): KYZ Thermal Conductivity
smat(6): KZZ Thermal Conductivity
smat(7): CP Heat Capacity per unit mass
smat(8): RHO Density
smat(9): Free Convection Heat Transfer 
Coefficient (Unused).

Build External Libraries for User-defined Materials

You can build shared libraries on Windows or Linux.

Refer to Build External Libraries for more information.

Cast Iron Plasticity

Cast iron material model is used to describe the yield behavior of grey cast iron, in which tension and compression behavior are different.

In this material model, rate form is used for strain evolution and the strain rate is decomposed into two parts (elastic and plastic parts) in an additive way.(1) ε ˙ = ε ˙ e + ε ˙ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aacqGH9aqpcuaH1oqzgaGaamaaCaaaleqabaGaamyzaaaakiabgUca Riqbew7aLzaacaWaaWbaaSqabeaacaWGWbaaaaaa@3F32@
The yielding criteria is defined as:(2) f0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgs MiJkaaicdaaaa@3951@
Where,
  • f={ 2 3 qcosθ+p σ t    p> σ c 3 q σ c                      p σ c 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9maaceaabaqbaeqabiqaaaqaamaalaaabaGaaGOmaaqaaiaaioda aaGaamyCaiGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiaadchacq GHsislcqaHdpWCdaWgaaWcbaGaamiDaaqabaGccaqGGaGaaeiiaiaa bccacaWGWbGaeyOpa4JaeyOeI0YaaSaaaeaacqaHdpWCdaWgaaWcba Gaam4yaaqabaaakeaacaaIZaaaaaqaaiaadghacqGHsislcqaHdpWC daWgaaWcbaGaam4yaaqabaGccaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc cacaWGWbGaeyizImQaeyOeI0YaaSaaaeaacqaHdpWCdaWgaaWcbaGa am4yaaqabaaakeaacaaIZaaaaaaaaiaawUhaaaaa@67B5@
  • q= 3 J 2 = 3 2 S:S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2 da9maakaaabaGaaG4maiaadQeadaWgaaWcbaGaaGOmaaqabaaabeaa kiabg2da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWHtb GaaiOoaiaahofaaSqabaaaaa@3FA1@
  • p= σ xx + σ yy + σ zz 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9maalaaabaGaeq4Wdm3aaSbaaSqaaiaadIhacaWG4baabeaakiab gUcaRiabeo8aZnaaBaaaleaacaWG5bGaamyEaaqabaGccqGHRaWkcq aHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqaaaGcbaGaaG4maaaaaaa@4662@
  • S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uaaaa@36D3@ is the tensor form of deviatoric stress.
  • S=[ S xx S xy S xz S yx S yy S yz S zx S zy S zz ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uaiabg2 da9maadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamiEaiaa dIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaake aacaWGtbWaaSbaaSqaaiaadIhacaWG6baabeaaaOqaaiaadofadaWg aaWcbaGaamyEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5b GaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG6baabeaa aOqaaiaadofadaWgaaWcbaGaamOEaiaadIhaaeqaaaGcbaGaam4uam aaBaaaleaacaWG6bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaa dQhacaWG6baabeaaaaaakiaawUfacaGLDbaaaaa@553C@
  • cos( 3θ )= ( r q ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbWaaeWaaeaacaaIZaGaeqiUdehacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaadaWcaaqaaiaadkhaaeaacaWGXbaaaaGaayjkaiaawM caamaaCaaaleqabaGaaG4maaaaaaa@423C@
  • r=( 9 2 SS:S ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2 da9maabmaabaWaaSaaaeaacaaI5aaabaGaaGOmaaaacaWHtbGaeyyX ICTaaC4uaiaacQdacaWHtbaacaGLOaGaayzkaaaaaa@40A8@
In the principal stress space, the yield function is:


Figure 1.


Figure 2.


Figure 3.


Figure 4.
The flow rule is expressed as:(3) { ( pg ) 2 a 2 + q 2 =9 g 2     p> σ c 3 q=3g                        p σ c 3     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qabeGabaaabaWaaSaaaeaadaqadaqaaiaadchacqGHsislcaWGNbaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyyamaaCa aaleqabaGaaGOmaaaaaaGccqGHRaWkcaWGXbWaaWbaaSqabeaacaaI YaaaaOGaeyypa0JaaGyoaiaadEgadaahaaWcbeqaaiaaikdaaaGcca qGGaGaaeiiaiaabccacaqGGaGaamiCaiabg6da+iabgkHiTmaalaaa baGaeq4Wdm3aaSbaaSqaaiaadogaaeqaaaGcbaGaaG4maaaaaeaaca WGXbGaeyypa0JaaG4maiaadEgacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiaabccacaWGWbGaeyizImQaeyOeI0YaaSaaae aacqaHdpWCdaWgaaWcbaGaam4yaaqabaaakeaacaaIZaaaaaaaaiaa wUhaaiaabccacaqGGaGaaeiiaaaa@6A02@

Hardening Rule

In this material model, only isotropic hardening is considered. The yield strength is increasing as the equivalent plastic strain grows. It is noted that as tension and the compression have different flow rules, the equivalent plastic strain is different for tension and compression. Hence, the tensile yield strength and the compressive yield strength are looked up from the tensile and the compressive table separately.

The compressive equivalent plastic strain is expressed as:(4) e n plc = e n1 plc + e ˙ plc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGUbaabaGaamiCaiaadYgacaWGJbaaaOGaeyypa0Jaamyz amaaDaaaleaacaWGUbGaeyOeI0IaaGymaaqaaiaadchacaWGSbGaam 4yaaaakiabgUcaRiqadwgagaGaamaaCaaaleqabaGaamiCaiaadYga caWGJbaaaaaa@4739@ (5) e ˙ plc = 2 3 S( ε ˙ p ):S( ε ˙ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzayaaca WaaWbaaSqabeaacaWGWbGaamiBaiaadogaaaGccqGH9aqpdaGcaaqa amaalaaabaGaaGOmaaqaaiaaiodaaaGaaC4uamaabmaabaGafqyTdu MbaiaadaahaaWcbeqaaiaadchaaaaakiaawIcacaGLPaaacaGG6aGa aC4uamaabmaabaGafqyTduMbaiaadaahaaWcbeqaaiaadchaaaaaki aawIcacaGLPaaaaSqabaaaaa@47D9@

Where, S( ε ˙ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uamaabm aabaGafqyTduMbaiaadaahaaWcbeqaaiaadchaaaaakiaawIcacaGL Paaaaaa@3B38@ is the tensor of deviatoric part of plastic strain rate.

The tensile equivalent plastic strain is:(6) e n plt = e n1 plt + e ˙ plt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGUbaabaGaamiCaiaadYgacaWG0baaaOGaeyypa0Jaamyz amaaDaaaleaacaWGUbGaeyOeI0IaaGymaaqaaiaadchacaWGSbGaam iDaaaakiabgUcaRiqadwgagaGaamaaCaaaleqabaGaamiCaiaadYga caWG0baaaaaa@476C@ (7) e ˙ plc = 1 σ tn ( p ε ˙ vol p +q e ˙ plc ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzayaaca WaaWbaaSqabeaacaWGWbGaamiBaiaadogaaaGccqGH9aqpdaWcaaqa aiaaigdaaeaacqaHdpWCdaWgaaWcbaGaamiDaiaad6gaaeqaaaaakm aabmaabaGaamiCaiqbew7aLzaacaWaa0baaSqaaiaadAhacaWGVbGa amiBaaqaaiaadchaaaGccqGHRaWkcaWGXbGabmyzayaacaWaaWbaaS qabeaacaWGWbGaamiBaiaadogaaaaakiaawIcacaGLPaaaaaa@4DAF@

Where, ε ˙ vol p = ε ˙ xx p + ε ˙ yy p + ε ˙ zz p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaqhaaWcbaGaamODaiaad+gacaWGSbaabaGaamiCaaaakiabg2da 9iqbew7aLzaacaWaa0baaSqaaiaadIhacaWG4baabaGaamiCaaaaki abgUcaRiqbew7aLzaacaWaa0baaSqaaiaadMhacaWG5baabaGaamiC aaaakiabgUcaRiqbew7aLzaacaWaa0baaSqaaiaadQhacaWG6baaba GaamiCaaaaaaa@4CFB@ .

In the above expressions, the subscript index n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamOBaaaa@36EB@ implies the physical quantity is at time t = n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWccaWG0bGaey ypa0JaamOBaaaa@38F4@ , and n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamOBaiabgk HiTiaaigdaaaa@3893@ means the physical quantity is at the last converged time t = n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWccaWG0bGaey ypa0JaamOBaiabgkHiTiaaigdaaaa@3A9C@ .

Input

Cast iron plasticity material data can be specified by using the MCIRON Bulk Data Entry which has the same identification number as an existing MAT1 Bulk Data Entry. The Tensile and Compressive stress-strain curves can be defined using the TABLE_T and TABLE_C fields on the MCIRON entry.

Cast iron material via MCIRON is supported for Small and Large Displacement Nonlinear Static Analysis. It is supported for CHEXA, CTETRA, CPENTA, and CPYRA elements (both first and second order).

In addition to regular result output, additional results from this material model are output if STRAIN(PLASTIC) I/O Option is specified. These results include, 6 plastic strain components, equivalent compressive plastic strain, equivalent tensile plastic strain, nodal results, and integration results are also available.

Multiscale Modeling

OptiStruct (OS) and Multiscale Designer (MDS) can be combined to perform multiscaling analysis on structural components utilizing both linear and nonlinear materials.

Heterogeneous materials such as composites, soil, solid foams, and polycrystals consist of one or more distinguishable constituents that have different mechanical properties. 3 For example, it is known that fiber-reinforced composite materials have a stiffer and stronger phase known as the reinforcement and, a less stiff and weaker phase known as the matrix. The governing equations are well understood in one of the scales, either the micro-scale or the macro-scale. While general constitutive equations are applicable to solids under deformation in the macro-scale, continuum models are required in the micro-scale. In order to bridge the gap between the two scales, you need to consider models at different scales simultaneously. This can be achieved by multiscaling techniques.

Classical laminate theory can predict the overall properties of heterogeneous laminates; whereas, homogenization theory provides information on the individual phase properties and phase geometries. Knowledge of individual phases is important to characterize material damage and failure. Hence, multiscaling techniques open unique opportunities for modeling by focusing the material behavior on different levels of physical laws.

An overall flowchart for integration between the two softwares is provided in Figure 5. Multiscale Designer has four pre-processing steps which are used to create material subroutines. These subroutines characterize the micro-scale material behavior in the linear and nonlinear domain. Later they are integrated with OptiStruct through the MATUSR material card for structural analysis.


Figure 5. Multiscale Designer - OptiStruct Integration
The four pre-processing steps in Multiscale Designer are:
  1. Unit cell geometry and mesh definition
  2. Linear material characterization
  3. Reduced-order homogenization
  4. Nonlinear material characterization
Note: Detailed information on the four pre-processing steps is explained in the Multiscale Designer User Manual. 1 Users are expected to understand material characterization in Multiscale Designer.

Single-scale Model

The basic steps required to construct a single-scale material model.

Cast iron plasticity is interesting to study because it has different yielding and hardening behavior when subjected to tensile and compressive loads. The first two sections explain the input data required from the Multiscale Designer (MDS). The next two sections explain the procedure to integrate the material in OptiStruct (OS) and perform structural analysis.

Linear Material Characterization

The material model type is selected as a single scale material characterization. Multiscale Designer allows material characterization for:
  • isotropic
  • trans-isotopic
  • orthotropic
  • anisotropic material

Here a homogeneous material with the properties of cast iron is utilized for characterization in the linear regime. The input elastic properties/parameters and values of the material are:

Linear elastic parameter properties and values of cast iron 2
Tensile Young’s modulus (GPa), E t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3829@
95.5
Compressive Young’s modulus (GPa), E c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3829@
95.5
Poisson's ratio, ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@37C4@
0.26

Nonlinear Material Characterization

Various constitutive laws are available in Multiscale Designer, such as rate-independent plasticity, visco-elasticity, damage laws. Here isotropic damage – 3-piecewise Linear Evolution is used to simulate the nonlinear behavior of the material. The damage model formulation within Multiscale Designer follows the continuum damage mechanics framework. The elastic stiffness matrix is degraded by using a damage state variable which is a function of principal strains. Only for compressive loads, the principal strains are multiplied by a compression factor to alleviate the damage in compression. The compression factor is calculated internally, based on the input properties of the material.

Failure input parameter properties and values of cast iron 2
Stress at damage initiation – tension (MPa), σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaaicdaaaaaaa@38D5@
126.0
Ultimate stress – tension (MPa), σ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaaicdaaaaaaa@38D5@
210.3
Strain at ultimate stress - tension, ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaCaaaleqabaWdbiaaigdaaaaaaa@38BA@
0.008
Strain to failure – tension, ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaCaaaleqabaWdbiaaigdaaaaaaa@38BA@
0.008
Stress at damage initiation – compression (MPa), σ c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaam4yaaWdaeaapeGaaGimaaaaaaa@39DC@
303.0
Ultimate stress - compression (MPa), σ c 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaam4yaaWdaeaapeGaaGimaaaaaaa@39DC@
443.3
Strain at ultimate stress - compression, ε c 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaDaaaleaapeGaam4yaaWdaeaapeGaaGymaaaaaaa@39C1@
0.010
Strain to failure – compression, ε c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaDaaaleaapeGaam4yaaWdaeaapeGaaGymaaaaaaa@39C1@
0.010

Nonlinear material characterization is done with a Unnotched Tensile/Compression built-in macro simulation model. Two simulations are defined conforming to ASTM D3039, D3518 and D6641. One to simulate tensile behavior and one for compressive behavior. In the process, a unit mesh – solid cube is fixed on one end and subjected to x-direction displacement on the other end. The stresses are computed by extracting, the reaction forces divided by unit area.

Parameter and input values for unnotched tension/compression simulation
Loading rate – Tension (/s)
0.008
Maximum strain - Tension
0.008
Loading rate – Compression (/s)
-0.01
Maximum strain - Compression
-0.01

The loading rate is the strain rate for the test. For all-rate independent laws (this includes isotropic damage law – 3 piecewise Linear evolution), it is typical to set the loading rate equal to the maximum strain. The minimum number of increments for mechanical loads is defined to be 20. This means that the initial time-step is set as the total step time divided by minimum mechanical increments.

The output data files are generated in the material model directory. The file path can be changed in the Multiscale Designer settings. The corresponding file names and descriptions are availble in ‘Unit Cell Data Files’ of the Multiscale Designer User Manual.

Structural Analysis

The user material is simulated in OptiStruct with nonlinear quasi-static analysis of a unit CHEXA cube element connected to eight CELAS1 spring elements (Figure 6). The springs have very low stiffness and are fixed on one end. Four springs have a connection in the y-direction and four have connections in the z-direction. The springs ensure that there are no rigid body motions in y- and z-directions. The unit CHEXA cube element is constrained along the x-translation direction; x, y and z rotational directions on the side which is connected to the springs and on the other side, the element is subjected to contraction load = 0.009 mm and extension load =0.007 mm in subcase 1 and 2, respectively.


Figure 6. Unit CHEXA Cube Element Model Connected to Springs

Integrate Multiscale Designer Files with OptiStruct

  1. In Multiscale Designer, select the input file (.mic).
  2. Select the Solver Interfaces tab.
  3. In the option for OptiStruct, click the Multiscale Materials tab.
    The Multiscale Designer solver interface for OptiStruct opens.
  4. Make sure that the plugin “dll” and multiscale material data files are pointing to the material subroutine and Multiscale Designer model, respectively.

    Example directory to the material subroutine and Multiscale Designer model are <hwinstallation_directory\hwsolvers\MultiscaleDesigner\win64\plugins\OptiStruct\umat.dll> and <working_directory\MultiscaleDesigner\model_name\Mechanical\model_name_mdsMAT.dat>, respectively.

    The number of user-defined variables computed for isotropic damage law is 8, which the terms from damage state variable, equivalent strain, total strain, and Eigen strain.

  5. Change the output folder directory for the plugin data to the model file path, <working_directory\model_name\Mechanical>.

    The generated plugin data file (OptiStruct_plugin_data.fem) contains the LOADLIB I/O and MATUSR cards for running the structural analysis. The LOADLIB I/O entry is used to implement external subroutines and MATUSR is used to defined user material parameters and properties. These cards are later inserted into OptiStruct input model files (*.fem).

    Note:
    1. The input model file should be in the same folder as the multiscale material. The material subroutines are called into this database through LOADLIB.
    2. The USUBID number in the MATUSR should refer to the multiscale material model ID.

Single-scale Results

Sample cards are generated for Multiscale Designer-OptiStruct integration, with the results of tension and compression test in OptiStruct with the user-defined material.

Elastic properties from homogenization and stress-strain curve from damage law are presented.

Linear Material Characterization

The parameters and values for Failure input properties of cast iron in Nonlinear Material Characterization show that the stress at damage initiation is 126 MPa for tension and 303 MPa for compression. The corresponding time-step, up to which the material is linear is 0.15 s and 0.30 s for tension and compression, respectively. Figure 7 shows the contour plots of x-direction stresses, x-direction strain and y-direction strain from which the elastic properties of the material can be calculated using elasticity equations. In this simulation, the homogenized elastic properties of the material are the same as input properties. This is because the material is assumed to be isotropic.


Figure 7. Built-in Macro Simulation in Multiscale Designer (Contour Plots). (a) and (d) x-direction stress in tension and compression, respectively; (b) and (e) x-direction strains in tension and compression, respectively; and (c) and (f) y-direction strains in tension and compression, respectively
The calculated homogenized parameter properties and values are:
Tensile Young’s modulus (GPa), E t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3829@
95.5
Compressive Young’s modulus (GPa), E c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@3829@
95.5
Poisson's value, ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@37C4@
0.26

Nonlinear Material Characterization

The stress-strain curve generated from Multiscale Designer is shown in Figure 8. The maximum difference between Multiscale Designer and experiment is 9.6 % at 0.004 strain. At strain values of -0.01 and 0.008, the models are fully damaged; therefore, it is recommended to use the material with a strain value from -0.095 to 0.0076. The stresses corresponding to the fully damaged strains are -0.96 MPa and 184.13 MPa, respectively. The results are plotted against data from experiments 2 and Multiscale Designer.


Figure 8. Stress-Strain Curve of Cast Iron from Multiscale Designer and Experiment

Multiscale Designer-OptiStruct Integration

The OptiStruct plugin file generated from Multiscale Designer is illustrated in Figure 9. This file contains information in the LOADLIB I/O and MATUSR cards.


Figure 9. OptiStruct Plugin File from Multiscale Designer

Structural Analysis

NLPARM and NLOUT cards are used for solution control and incremental solution output, respectively, for nonlinear analysis in OptiStruct. In this model, the incremental results are output for each load increment value of 0.05. The material stays linear up to a load factor of 0.175 for tension and 0.2875 for compression. Figure 10 shows the contour plots of x-direction stresses, x-direction strains and y-direction strains for the corresponding load factors. The wireframes in Figure 10 shows the undeformed boundaries.


Figure 10. Structural Analysis in OptiStruct (Contour Plots). (a) and (d) x-direction stress in tension and compression, respectively; (b) and (e) x-direction strains in tension and compression, respectively; and (c) and (f) y-direction strains in tension and compression, respectively
Figure 11 depicts the stress-strain curve generated from OptiStruct using MATUSR and LOADLIB. The plot shows that the user-material from Multiscale Designer can be simulated well in OptiStruct.


Figure 11. Stress-Strain Curve of Cast Iron

Multiscale Model

The basic steps required to construct a multiscale material model.

Unidirectional fiber-reinforced polymer composite is subjected to tensile load in fiber-axial and fiber-transverse directions. The response of the material is output and validated with experimental data. The first two sections explain the input data required from the Multiscale Designer (MDS). The next two sections explain the procedure to integrate the material in OptiStruct (OS).

Unit Cell Model and Linear Material Characterization

The material model type is selected as multi-scale material characterization. The unit cell is modeled as a fibrous material with a square packing array. The volume fraction of the fiber phase is 65%. Figure 12 represents various unit cell models available in Multiscale Designer for fibrous composites.


Figure 12. Fibrous Unit Cell Models. (a) square packing array; (b) square packing array with an interface; (c) hexagonal packing array; (d) hexagonal packing array with interface; (e) non-crimp ellipsoidal fabric; and (f) discontinuous fiber packing array

The matrix is modeled with homogeneous elastic properties and the fiber is assumed to be transversely isotropic. Periodic boundary conditions are applied to the unit cell to obtain the homogenized stiffness matrix of the composite.

Linear elastic parameter properties and values of fiber and matrix 4
Young’s modulus of the matrix (GPa), E m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaahaaWcbeqaa8qacaWGTbaaaaaa@3814@
3.8
Poisson’s ratio of the matrix, ν m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42damaaCaaaleqabaWdbiaad2gaaaaaaa@3902@
0.32
Longitudinal Young’s modulus of fiber (GPa), E 1 f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaadAgaaaaaaa@38E7@
252.25
Transverse Young’s modulus of fiber (GPa), E 2 f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaadAgaaaaaaa@38E7@
13.45
Longitudinal Poisson’s ratio, ν 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42damaaBaaaleaapeGaaGymaiaaikdaa8aabeaaaaa@3995@
0.02
Transverse Poisson’s ratio, ν 23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42damaaBaaaleaapeGaaGymaiaaikdaa8aabeaaaaa@3995@
0.3

Nonlinear Material Characterization

The matrix is assumed to obey isotropic damage – bilinear evolution model and the fiber is assumed to follow orthotropic damage – bilinear evolution, for simulating the nonlinear behavior of the material.

The nonlinear input parameter properties and values for damage law 4 are:
Stress at damage initiation (MPa), σ 0 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaaicdacaWGTbaaaaaa@39C7@
126.0
Strain at ultimate stress, ε 1 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaCaaaleqabaWdbiaaigdacaWGTbaaaaaa@39AC@
0.1
Damage input properties of the fiber
Stress at damage initiation – longitudinal direction (GPa), σ 1 0 f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaaGymaaWdaeaapeGaaGimaiaadAga aaaaaa@3A9A@
4.2
Strain at ultimate stress – longitudinal direction, ε 1 1 f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaDaaaleaapeGaaGymaaWdaeaapeGaaGymaiaadAga aaaaaa@3A7F@
0.017
Stress at damage initiation – transverse direction (MPa), σ 2 0 f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaaGymaaWdaeaapeGaaGimaiaadAga aaaaaa@3A9A@
75.0
Strain at ultimate stress – transverse direction, ε 2 1 f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaDaaaleaapeGaaGymaaWdaeaapeGaaGymaiaadAga aaaaaa@3A7F@
0.05

For nonlinear material characterization in fiber-axial and fiber-transverse direction, two laminate layups with unit thickness are created with orientations 0° and 90°, respectively. Each laminate is subjected to Unnotched Tensile/Compression macro simulation with different loading rates.

The input values for the macro simulations are:
Loading rate – Fiber axial direction test (/s)
0.05
Maximum strain - Fiber axial direction test
0.05
Loading rate – Fiber transverse direction test (/s)
0.017
Maximum strain - Fiber transverse direction test
0.017

The output data files are generated in the material model directory and the stress-strain curve data will export to an Excel spreadsheet file in <material_model_directory\model_name\mechanical\model_name_NLmatl.xlsx>.

Integrate Multiscale Designer Files with Multiscale Designer-OptiStruct

  1. In Multiscale Designer solver interface for OptiStruct, click the Homogenized Materials tab.
  2. Set the card images to MAT2, MAT8, MAT9 or MAT9ORT.
  3. Click the Multiscale Materials tab and set the output file path for the OptiStruct plugin “dll”.
  4. In the multiscale material data file, browse the file path to <material_model_directory\model_name\mechanical\model_name_mdsMAT.dat>.

    The number of user-defined variables computed for orthotropic damage law is 8, which involves the terms from the damage state variable, equivalent strain, total strain, and Eigen strain.

  5. By default, the OptiStruct plugin data files are output to <material_model_directory\Macro\Mechanical\OptiStruct_plugin_data.fem>.

Multiscale Results

Sample cards are generated for Multiscale Designer-OptiStruct integration with OptiStruct test results.

Elastic properties from homogenization and stress-strain curve from damage law are presented.

Unit Cell Model and Linear Material Characterization

Figure 13 represents the square fiber packing array generated from Multiscale Designer. The relative radius of the fiber with respect to the unit cell size for the fiber volume fraction is 0.45.


Figure 13. Unit Cell Model of Square Packing Array . with Fiber Volume Fraction = 65%
Homogenized elastic properties of the fiber/matrix composite. Nonlinear material characterization. All these values are available in an Excel spreadsheet in <material_model_directory\model_name\mechanical\model_name_Lmatl.xlsx>.
Longitudinal Young’s modulus (GPa), E 1 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaadogaaaaaaa@38E4@
165.4
Transverse Young’s modulus (GPa), E 1 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaadogaaaaaaa@38E4@
8.8
Longitudinal Poisson’s ratio, ν 12 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42damaaDaaaleaapeGaaGymaiaaikdaa8aabaWdbiaadoga aaaaaa@3A8E@
0.11
Transverse Poisson’s ratio, ν 23 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42damaaDaaaleaapeGaaGymaiaaikdaa8aabaWdbiaadoga aaaaaa@3A8E@
0.34

Nonlinear Material Characterization

Figure 14 and Figure 15 show the stress-strain curve generated from Multiscale Designer for fiber-axial and fiber-transverse direction tensile tests. These values are plotted over experimental data. 4 The maximum difference in tensile yield strength between Multiscale Designer and experiment is 6.0 % for the fiber-axial direction test and 11.3 % for the fiber-transverse direction test.


Figure 14. Comparison of Stress-Strain Curves. fiber-axial tensile test from Multiscale Designer and experiment


Figure 15. Stress-Strain Curve. fiber-transverse tensile test from Multiscale Designer and experiment

Multiscale Designer-OptiStruct Integration

A MAT9ORT material file generated from Multiscale Designer is illustrated in Figure 16. These files are to be used in OptiStruct to run any structural analysis. The OptiStruct plugin file which contains the LOADLIB I/O and MATUSR cards is the same as in Figure 9.


Figure 16. Homogenized Composite Properties in OptiStruct MAT9ORT Format
1 Altair Engineering Inc. 2018. Multiscale Designer: User Manual. Troy, MI
2 Downing, S.D., 1984. “Modeling Cyclic Deformation and Fatigue Behavior of Cast Iron under Uniaxial Loading,” Report No. 11, University of Illinois at Urbana-Champaign, IL
3 Fish, J., 2014. Practical Multiscaling. John Wiley & Sons, Ltd.
4 Yuan, Z., Crouch, R., Wollschlager, J., Shojaei, A., Fish, J., 2016. “Assessment of Altair Multiscale Designer for damage tolerant design principles (DTDP) of advanced composite aircraft structures,” Journal of Composite Materials, 51(10): 1379-1391