eig
Eigen decomposition.
Syntax
d = eig(A)
d = eig(A,B)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
[V,D] = eig(A,B)
Inputs
- A
- The matrix to decompose.
- B
- The right hand side matrix in a generalized Eigen problem.
Outputs
- d
- Eigenvalue vector.
- V
- Eigen vector matrix.
- D
- Eigenvalue diagonal matrix.
Example
[V,D]=eig([58,32,84;32,-18,-44;84,-44,50])
V = [Matrix] 3 x 3
-0.49774 0.49636 0.71125
0.66719 0.74309 -0.05167
0.55417 -0.44882 0.70103
D = [Matrix] 3 x 3
-78.41904 0.00000 0.00000
0.00000 29.95102 0.00000
0.00000 0.00000 138.46802
Comments
[V,D] = eig(A) computes matrices V and D such that AV = VD).
[V,D] = eig(A,'nobalance') omits the balancing operation.
[V,D] = eig(A,B) computes matrices V and D such that AV = BVD.
eig(A) uses the LAPACK routines 'dsyev' for real symmetric matrices and 'zheev' for complex Hermitian matrices.
eig(A) uses the LAPACK routines 'dgeevx' for real asymmetric matrices and 'zgeevx' for complex non-Hermitian matrices.
eig(A,B) uses the LAPACK routines 'dsygv' for real symmetric matrices and 'zhegv' for complex Hermitian matrices.
eig(A,B) uses the LAPACK routines 'dggev' for real asymmetric matrices and 'zggev' for complex non-Hermitian matrices.