Cross Sectional Properties Calculated by HyperBeam

The beam cross section is always defined in a y,z plane.

The x-axis is defined along the beam axis. The coordinate system you define is called the local coordinate system; the system parallel to the local coordinate system with the origin in the centroid is called the centroidal coordinate system; the system referring to the principal bending axes is called the principal coordinate system.

For shell sections, only the theory of thin walled bars is used. This means that for the calculation of the moments and product of inertia, terms of higher order of the shell thickness t are neglected. Thickness warping is also neglected.
Area
A=dAA=dA
Area Moments of Inertia
Iyy=z2dAIyy=z2dA
Izz=y2dAIzz=y2dA
Area Products of Inertia
Izz=y2dAIzz=y2dA
Radius of Gyration
Rg=IminARg=IminA
Elastic Section Modulus
Ey=IyyzmaxEy=Iyyzmax
Ez=IzzymaxEz=Izzymax
Max Coordinate Extension
ymax=max|y|ymax=max|y|
zmax=max|z|zmax=max|z|
Plastic Section Modulus
Py|z|dAPy|z|dA
Pz|y|dAPz|y|dA
Torsional Constant
Solid
It=Iyy+Izz+(zωyyωz)dAIt=Iyy+Izz+(zωyyωz)dA
ω - Warping function
(see below for warping function)
Shell open
It=13t3dsIt=13t3ds
t - Shell thickness
Shell closed
It=2AmiFsiIt=2AmiFsi
AmiAmi - Area enclosed by cell ii
FsiFsi - Shear flow in cell ii
Elastic Torsion Modulus
Solid
Et=Itmax(y2+z2+zωyyωz)Et=Itmax(y2+z2+zωyyωz)
Shell open
Et=ItmaxtEt=Itmaxt
Shell closed
Et=Itmax(Fsit)Et=Itmax(Fsit)
Shear Center
ys=IyzIyωIzzIzωIyyIzzI2yzIyω=yωdA,Izω=zωdAys=IyzIyωIzzIzωIyyIzzI2yzIyω=yωdA,Izω=zωdA
zs=IyzIyωIyzIzωIyyIzzI2yzzs=IyzIyωIyzIzωIyyIzzI2yz
Warping Constant (normalized to the shear center)
Iωω=ω2dAIωω=ω2dA
Shear deformation coefficients
αzz=1Q2y(τ2xy|Qz=0+τ2xz|Qz=0)dAαzz=1Q2y(τ2xyQz=0+τ2xzQz=0)dA
αzy=1QyQz(τxy|Qy=0τxy|Qz=0+τxz|Qy=0τxy|Qz=0)dAαzy=1QyQz(τxyQy=0τxyQz=0+τxzQy=0τxyQz=0)dA
αzz=1Q2z(τ2xy|Qy=0+τ2xz|Qy=0)dAαzz=1Q2z(τ2xyQy=0+τ2xzQy=0)dA
Shear stiffness factors
kyy=1αzzkyy=1αzz
kyz=1αyzkyz=1αyz
kzz=1αyykzz=1αyy
Shear stiffness
Sii=kiiGASii=kiiGA
Warping Function
2ω=02ω=0
(ωyz)ny+(ωz+y)nz=0(ωyz)ny+(ωz+y)nz=0
For solid sections, the warping function is computed using a finite element formulation. This may lead to un-physically high stresses in geometric singularities (sharp corners) that get worse with mesh refinement. This may cause problems computing the elastic torsion modulus.

Nastran Type Notation

/1=Izz/1=Izz

/2=Iyy/2=Iyy

/12=Iyz/12=Iyz

K1=KyyK1=Kyy

K2=KzzK2=Kzz