Ductile Damage Model

In Brittle Damage: Johnson-Cook Plasticity Model (LAW27), a damage model for brittle materials is presented. It is used in Radioss LAW27 valid for shell meshes. The damage is generated when the shell works in traction only. A generalized damage model for ductile materials is incorporated in Radioss LAW22 and LAW23. The damage is not only generated in traction but also in compression and shear. It is valid for solids and shells. The elastic-plastic behavior is formulated by Johnson-Cook model. The damage is introduced by the use of damage parameter, δ . The damage appears in the material when the strain is larger than a maximum value, ε d a m :

0 δ 1
  • If ε < ε d a m δ = 0 LAW 22 is identical to LAW2.
  • If ε ε d a m ε d a m = ( 1 δ ) E and v d a m = 1 2 δ + ( 1 δ ) v

This implies an isotropic damage with the same effects in tension and compression. The inputs of the model are the starting damage strain ε d a m and the slope of the softening curve E t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWG0baabeaaaaa@37E5@ as shown in Figure 1.

For brick elements the damage law can be only applied to the deviatoric part of stress tensor s i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38F7@ and G d a m = E d a m 2 ( 1 + v d a m ) . This is the case of LAW22 in Radioss. However, if the application of damage law to stress tensor σ i j is expected, Radioss LAW23 may be used.


Figure 1. Ductile Damage Model
The strain rate definition and filtering for these laws are explained in Johnson-Cook Plasticity Model (LAW2). The strain rate ε ˙ may or may not affect the maximum stress value σ max according to the user's choice, as shown in Figure 2.
(a) Strain rate effect on σ max (b) No strain rate effect on σ max




σ = σ y ( 1 + c ln ( ε ˙ ε ˙ o ) )

σ max = σ max 0 ( 1 + c . ln ( ε ˙ ε ˙ 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaciyBaiaacggacaGG4baabeaakiabg2da 9iabeo8aZnaaDaaaleaaciGGTbGaaiyyaiaacIhaaeaacaaIWaaaaO WaaeWaaeaacaaIXaGaey4kaSIaam4yaiaac6caciGGSbGaaiOBamaa bmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew7aLzaacaWaaSbaaS qaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa @50BF@

σ = σ y ( 1 + c ln ( ε ˙ ε ˙ o ) )

σ max = σ max 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaciyBaiaacggacaGG4baabeaakiabg2da 9iabeo8aZnaaDaaaleaaciGGTbGaaiyyaiaacIhaaeaacaaIWaaaaa aa@4428@

Figure 2. Strain Rate Dependency