**AtPoint**

An AtPoint joint is a three degree-of-freedom kinematic pair used in mechanisms. This joint is identical to the ball joint. AtPoint joints provide three-axis rotation function.**Ball**

A ball joint (also known as a spherical joint; socket joint) is a three degree-of-freedom kinematic pair used in mechanisms. Ball joints provide three-axis rotation function used in many places, such as steering racks to knuckles via tie-rods and knuckle-to-control arm joints.**Constant Velocity**

A constant velocity joint is a two degree-of-freedom constraint. It constrains the rotation of a body (Body 1) about a specified axis to be equal to the rotation of the other body (Body 2) connected by the joint. The axis of rotation is the Z axes of the markers defined on the connecting user-defined bodies. Constant velocity joints are widely used in drive shafts of vehicles with independent suspension.**Cylindrical**

A cylindrical joint is a two degree-of-freedom kinematic pair used in mechanisms. Cylindrical joints provide one translation and one rotation function. They are commonly used in many places, such as shock absorber tubes and rods and hydraulic cylinder/rod pairs.**Fixed**

A fixed joint is a zero degree-of-freedom constraint. It applies a rigid connection between the connecting bodies, meaning bodies connected by a fixed joint are forced to move together. Fixed joints can be used to simulate connections where relative displacements are idealized to zero, such as bolted connections, welded connections, and bodies that are fixed in motion and orientation with respect to another body.**Inline**

An inline joint is a four degree-of-freedom primitive constraint. The constraint is imposed such that the origin of a reference marker on one body (Body 2) translates along the Z axis of a reference marker on the other body (Body 1) connected by the joint. Three rotations are free along with one translation along the Z marker defining the joint orientation. Joint primitives like inline joints may not have a physical existence. They can be used to impose unique constraints where using a regular joint would not be possible.**Inplane**

An inplane joint is a five degree-of-freedom primitive constraint. It constrains one body (Body 1) to remain in a plane (XY plane) defined on the other body (Body 2) connected by the joint. Three rotations are free along with two translations. The only degree of freedom being arrested is the 'away' motion of Body 1 from Body 2. Joint primitives like inplane joints may not have a physical existence. These joints can be used in applications like imposing geometric constraints.**Orientation**

An orientation joint is a three degree-of-freedom kinematic pair. The joint constrains the three rotational degrees of freedom while all three translations are free. Effectively, the orientations of the two bodies connected by the joint remain the same.**Parallel Axes**

A parallel axes joint is a four degree-of-freedom primitive constraint. The constraint is imposed such that the Z axis of a reference marker on one body (Body 2) remains parallel to the Z axis of a reference marker on the other body (Body 1) connected by the joint. All three of the translations are free along with one rotation about the Z axis of the marker defining the joint orientation. Joint primitives like parallel axes joints may not have a physical existence. Parallel axes joints can be used to impose unique constraints where using a regular joint would not be possible.**Perpendicular Axes**

A perpendicular axes joint is a five degree-of-freedom primitive constraint. The constraint is imposed such that the Z axis of a reference marker on one body (Body 2) remains perpendicular to the Z axis of a reference marker on the other body (Body 1) connected by the joint. All three translations are free along with two rotations about the Z axis of markers on both of the bodies defining the joint orientation. Joint primitives like perpendicular axes joints may not have a physical existence. These types of joints can be used to impose unique constraints where using a regular joint would not be possible.**Planar**

A planar joint is a three degree-of-freedom constraint. It constrains a plane on one body (Body 1) to remain in a plane defined on the other body (Body 2) connected by the joint. The planes are defined by the X and Y axes of the markers defining the joint. Body 1 can rotate about Z axis and translate along the X and Y axes of the marker which is used to define the constraint.**Revolute**

A revolute joint (also known as a pin joint or a hinge joint) is a one degree-of-freedom kinematic pair used in mechanisms. Revolute joints provide single-axis rotation function in places such as door hinges and folding mechanisms.**Screw**

A screw joint is a five degree-of-freedom kinematic pair used in mechanisms. Screw joints imposes a relation between the rotation of one body (Body 1) about an axis to the translation of the other body (Body 2) along an axis. The pitch of the joint completes this relation. One full rotation of Body 1 translates Body 2 by a distance equal to the pitch. Screw joints are commonly used in applications such as bolt and nut constraints and rack and pinion steering.**Translational**

A translational joint is a one degree-of-freedom kinematic pair used in mechanisms. Translational joints provide single-axis rotation function in places such as splined shafts and slider mechanisms.**Universal**

A universal joint is a two degree-of-freedom kinematic pair used in mechanisms. It is functionally identical to, and also referred to as a Hooke joint. The only difference between these two joints is the way that the joint is defined. Universal joints provide two rotational functions in applications such as propeller shafts, drive shafts, and steering columns.