Three-Equation Eddy Viscosity Models

v2-f Model

In order to account for the near wall turbulence anisotropy and non local pressure strain effects, Durbin (1995) introduced a velocity scale v2 and the elliptic relaxation function f to the standard k-ε turbulence model.

The velocity scale v2 represents the velocity fluctuation normal to the streamline and represents a proper scaling of the turbulence damping near the wall, while the elliptic relaxation function f is used to model the anisotropic wall effects. Compared to the k-ε turbulence models, the v2-f model produces more accurate predictions of wall-bounded flows dominated by separation but suffers from numerical stability issues.

Transport Equations

Turbulent Kinetic Energy k (1) (ρk)t+(ρ¯ujk)xj =xj[(μ+μtσk)kxj]+Pk+Dk(ρk)t+(ρ¯¯¯¯ujk)xj =xj[(μ+μtσk)kxj]+Pk+Dk
Turbulent Dissipation Rate ε (2) (ρε)t+(ρ¯ujε)xj =xj[(μ+μtσε)εxj]+Pε+Dε(ρε)t+(ρ¯¯¯¯ujε)xj =xj[(μ+μtσε)εxj]+Pε+Dε
Velocity Scale v2 (3) (ρ¯v2)t+(ρ¯uj¯v2)xj =xj[(μ+μtσv2)¯v2xj]+Pv2+Dv2(ρ¯¯¯v2)t+(ρ¯¯¯¯uj¯¯¯v2)xj =xj[(μ+μtσv2)¯¯¯v2xj]+Pv2+Dv2

Elliptic Relation for the relaxation function f

L22fx2jf =(C11)T(v2k23)C2PkεL22fx2jf =(C11)T(v2k23)C2Pkε

where
  • L=CL max(k3/2ε,Cη[ν3ε]1/4 )L=CL max(k3/2ε,Cη[ν3ε]1/4 ): the length scale,
  • T=max(kε,CT[νε] )T=max(kε,CT[νε] ): the time scale.

Production Modeling

Turbulent Kinetic Energy k (4) Pk=μtS2Pk=μtS2
Turbulent Dissipation Rate ε (5) Pε=Cε1εkμtS2=Cε1εkPkPε=Cε1εkμtS2=Cε1εkPk
Velocity Scale v2 (6) Pv2=ρkfPv2=ρkf

Dissipation Modeling

Turbulent Kinetic Energy k (7) Dk=ρεDk=ρε
Turbulent Dissipation Rate ε (8) Dε=Cε2ρε2kDε=Cε2ρε2k
Velocity Scale v2 (9) Dv2=ρε¯v2kDv2=ρε¯¯¯v2k

Modeling of Turbulent Viscosity μtμt

(10) μt=ρCμ¯v2Tμt=ρCμ¯¯¯v2T

Model Coefficients

Cε1Cε1 = 1.44, Cε2Cε2 = 1.92, CμCμ = 0.22, σkσk = 1.0, σεσε = 1.3. C1C1 = 1.4, C2C2 = 0.45, CTCT = 6.0, CLCL = 0.25, CηCη = 85, σv2σv2 = 1.0.

Zeta-F Model

The base model of the zeta-f model is the v2f model described by Durbin (1995).

However, by introducing a normalizing velocity scale, the numerical stability issues found in the v2f model have been improved (Hanjalic et al., 2004; Laurence et al., 2004; Popovac and Hanjalic, 2007).

Transport Equations

Turbulent Kinetic Energy k (11) (ρk)t+(ρ¯ujk)xj =xj[(μ+μtσk)kxj]+Pk+Dk(ρk)t+(ρ¯¯¯¯ujk)xj =xj[(μ+μtσk)kxj]+Pk+Dk
Turbulent Dissipation Rate ε(12) (ρε)t+(ρ¯ujε)xj =xj[(μ+μtσε)εxj]+Pε+Dε(ρε)t+(ρ¯¯¯¯ujε)xj =xj[(μ+μtσε)εxj]+Pε+Dε
Normalized Velocity Scale ς=¯v2kς=¯¯¯v2k(13) (ρς)t+(ρ¯ujς)xj =xj[(μ+μtσς)ςxj]+Pς+Dς(ρς)t+(ρ¯¯¯¯ujς)xj =xj[(μ+μtσς)ςxj]+Pς+Dς

Elliptic Relation for the Relaxation Function f

(14) L22fx2jf =1T(C1+C'2Pkε1)(ς23)L22fx2jf =1T(C1+C'2Pkε1)(ς23)

where L=CL max(min[k3/2ε,k6Cμ|S|ς],Cη[ν3ε]1/4 )L=CL max(min[k3/2ε,k6Cμ|S|ς],Cη[ν3ε]1/4 ): the length scale, T=max(min[kε,0.66Cμ|S|ς],CT[νε] ): the time scale.

Production Modeling

Turbulent Kinetic Energy k (15) Pk=μtS2
Turbulent Dissipation Rate ε (16) Pε=Cε1εkμtS2=Cε1εkPk

Velocity Scale ς

Pς=ρf

Dissipation Modeling

Turbulent Kinetic Energy k (17) Dk=ρε
Turbulent Dissipation Rate ε (18) Dε=Cε2ρε2k
Velocity Scale ς (19) Dζ=ρζkPk

Modeling of Turbulent Viscosity μt

(20) μt=ρCμςkT

Model Coefficients

Cε1 = 1.44, Cε2 = 1.92, Cμ = 0.22, σk = 1.0, σε = 1.3. C1 = 1.4, C'2 = 0.65, CT = 6.0, CL = 0.36, Cη = 85, σζ = 1.2.