/PROP/TYPE13 (SPR_BEAM)

ブロックフォーマットキーワード このビームタイプスプリングプロパティは、6つの独立変形モードを持つビーム要素として機能します。このスプリングでは、非線形剛性、減衰、異なる除荷が考慮されます。変形、荷重、エネルギーに基づく破壊基準を使用できます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/PROP/TYPE13/prop_ID/unit_IDまたは/PROP/SPR_BEAM/prop_ID/unit_ID
prop_title
Mass Inertia Skew_ID sens_ID Isflag Ifail Ileng Ifail2
Loading index=1:引張 / 圧縮
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K1 C1 A1 B1 D1
fct_ID11 H1 fct_ID21 fct_ID31 fct_ID41   δ min 1 δ max 1
F1 E1 Ascale1 Hscale1    
Loading index=2:せん断XY
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K2 C2 A2 B2 D2
fct_ID12 H2 fct_ID22 fct_ID32 fct_ID42   δ min 2 δ max 2
F2 E2 Ascale2 Hscale2    
Loading index=3:せん断XZ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K3 C3 A3 B3 D3
fct_ID13 H3 fct_ID23 fct_ID33 fct_ID43   δ min 3 δ max 3
F3 E3 Ascale3 Hscale3    
Loading index=4:ねじり
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K4 C4 A4 B4 D4
fct_ID14 H4 fct_ID24 fct_ID34 fct_ID44   θ min 4 θ max 4
F4 E4 Ascale4 Hscale4    
Loading index=5:Y方向の曲げ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K5 C5 A5 B5 D5
fct_ID15 H5 fct_ID25 fct_ID35 fct_ID45   θ min 5 θ max 5
F5 E5 Ascale5 Hscale5    
Loading index=6:Z方向の曲げ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
K6 C6 A6 B6 D6
fct_ID16 H6 fct_ID26 fct_ID36 fct_ID46   θ min 6 θ max 6
F6 E6 Ascale6 Hscale6    
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
v 0 ω 0 Fcut Fsmooth      
C1 n1 α 1 β 1    
C2 n2 α 2 β 2    
C3 n3 α 3 β 3    
C4 n4 α 4 β 4    
C5 n5 α 5 β 5    
C6 n6 α 6 β 6    

定義

フィールド 内容 SI 単位の例
prop_ID プロパティの識別子

(整数、最大10桁)

 
unit_ID 単位識別子

(整数、最大10桁)

 
prop_title プロパティのタイトル

(文字、最大100文字)

 
Mass 質量。

(実数)

[ kg ]
Inertia スプリングの慣性

(実数)

[ m 2 kg ]
Skew_ID スキュー座標系識別子。

(整数)

 
sens_ID センサーの識別子
= 0
スプリングはアクティブ

(整数)

 
Isflag センサーフラグ 3
=0
sens_IDがアクティブ化し、非アクティブ化できない際にスプリング要素はアクティブ化
=1
sens_IDがアクティブ化し、非アクティブ化できない際にスプリング要素は非アクティブ化
=2
スプリング要素はアクティブ化、または非アクティブ化されると、状態はセンサーの状態と一致し、前後に切り替わります。スプリングの初期長さ( l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaaIWaaabeaaaaa@37CD@ は、アクティブ化時間におけるスプリング長に基づきます。

(整数)

 
Ifail 破壊基準
= 0
1方向基準
= 1
多方向基準

(整数)

 
Ileng 単位長さあたりの入力フラグ 4 5
= 0
スプリングのプロパティは、定義テーブルの指定内容で入力されます。
= 1
スプリングの質量と慣性の入力は、単位長さあたりの値です。スプリングの剛性は、工学ひずみの関数です。

(整数)

 
Ifail2 破壊モデルフラグ 7
= 0(デフォルト)
変位と回転の基準
= 1
速度率効果を擁する変位と回転の基準
= 2
力とモーメントの基準
= 3
内部エネルギー基準

(整数)

 
Ki fct_ID1i = 0の場合:線形載荷および除荷剛性。

fct_ID1i0の場合:弾塑性スプリングの除荷剛性としてのみ使用されます。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(実数)

[ N m ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ Nm rad ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Ci 減衰 1

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(実数)

[ Ns m ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ Nms rad ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Ai 非線形剛性関数スケールファクター

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 1.0(実数)

[ N ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ Nm ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Bi 対数速度効果スケールファクター

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 0.0(実数)

[ N ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ Nm ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Di 対数速度効果スケールファクター

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 1.0(実数)

[ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ rad s ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

fct_ID1i 非線形剛性 f ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaae WaaeaaaiaawIcacaGLPaaaaaa@38D3@ を定義する関数の識別子。 5
= 0
剛性Kの線形スプリング。

Hi = 4の場合:関数は上方の降伏曲線を定義します。

Hi =8の場合:関数は必須で力またはモーメント対スプリング長を定義します。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(整数)

 
Hi スプリングの硬化 非線形スプリングのフラグ
= 0
弾性スプリング
= 1
等方硬化を伴う非線形弾塑性スプリング
= 2
分離硬化を伴う非線形弾塑性スプリング
= 4
移動硬化を伴う非線形弾塑性スプリング
= 5
非線形除荷を伴う非線形弾塑性スプリング
= 6
等方硬化と非線形除荷を伴う非線形弾塑性スプリング
= 7
弾性ヒステリシスを伴う非線形弾塑性スプリング

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(整数)

 
fct_ID2i スプリングの速度の関数 g ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGNbWaae WaaeaaaiaawIcacaGLPaaaaaa@38D5@ として力またはモーメントを定義する関数の識別子。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(整数)

 
fct_ID3i 関数の識別子

Hi =4の場合:下方の降伏曲線を定義します。

Hi =5の場合:残差変位または回転対最大変位または回転を定義します。

Hi =6の場合:非線形除荷曲線を定義します。

Hi =7の場合:非線形除荷曲線を定義します。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(整数)

 
fct_ID4i 非線形減衰 h ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGObWaae WaaeaaaiaawIcacaGLPaaaaaa@38D5@ の場合の関数の識別子。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(整数)

 
δ min i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda qhaaWcbaGaciyBaiaacMgacaGGUbaabaGaamyAaaaaaaa@3BF0@ 負の並進破壊限界

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合は、並進自由度です。

デフォルト = -1030(実数)

 
Ifail2 = 0または1:破壊変位 [ m ]
Ifail2 = 2:破壊の力 [ N ]
Ifail2 = 3:破壊内部エネルギー [ J ]
θ min i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda qhaaWcbaGaciyBaiaacMgacaGGUbaabaGaamyAaaaaaaa@3C01@ 負の回転破壊限界

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = -1030(実数)

次の場合; I
Ifail2 = 01:破壊回転 [ rad ]
Ifail2 = 2:破壊モーメント [ N m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaci GGobGaeyyXICTaciyBaaGaay5waiaaw2faaaaa@3BFA@
Ifail2 = 3:破壊内部エネルギー [ J ]
δ max i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda qhaaWcbaGaciyBaiaacggacaGG4baabaGaamyAaaaaaaa@3BF2@ 正の並進破壊限界

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

デフォルト = -1030(実数)

 
Ifail2 = 0または1:破壊変位 [ m ]
Ifail2 = 2:破壊の力 [ N ]
Ifail2 = 3:破壊内部エネルギー [ J ]
θ max i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda qhaaWcbaGaciyBaiaacggacaGG4baabaGaamyAaaaaaaa@3C03@ 正の回転破壊限界

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = -1030(実数)

 
Ifail2 = 0または1:破壊回転 [ rad ]
Ifail2 = 2:破壊モーメント [ N m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaci GGobGaeyyXICTaciyBaaGaay5waiaaw2faaaaa@3BFA@
Ifail2 = 3:破壊内部エネルギー [ J ]
Fi g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E2@ h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E2@ の減衰関数の横軸に対するスケールファクター

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 1.0(実数)

[ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ rad s ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Ei 減衰の関数 g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E2@ の縦軸のスケールファクター。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

(実数)

[ N ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ Nm ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Ascalei 剛性の関数 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E2@ の横軸のスケールファクター。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 1.0(実数)

[ m ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ rad ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Hscalei 減衰の関数 h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E2@ の縦軸のスケールファクター。

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 1.0(実数)

[ N ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ Nm ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

v 0 基準並進速度

デフォルト = 1.0(実数)

[ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@
ω 0 基準回転速度

デフォルト = 1.0(実数)

[ rad s ]
Fcut ひずみ速度カット周波数

デフォルト = 1030(実数)

[Hz]
Fsmooth ひずみ速度平滑化フラグ
= 0(デフォルト)
ひずみ速度スムージングは非アクティブ
=1
ひずみ速度スムージングはアクティブ

(整数)

 
Ci 相対速度係数

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 0.0(実数)

 
Ifail2 = 0または1:破壊変位または回転 [ m ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ rad ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Ifail2 = 2:破壊の力またはモーメント [ N ] i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 1、2、3の場合

[ N m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaci GGobGaeyyXICTaciyBaaGaay5waiaaw2faaaaa@3BFA@ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ = 4、5、6の場合

Ifail2 = 3:破壊内部エネルギー係数 [ J ]
ni 相対速度指数

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 0.0(実数)

 
α i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaamyAaaqabaaaaa@3917@ 破壊スケールファクター

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 1.0(実数)

 
β i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyda WgaaWcbaGaamyAaaqabaaaaa@3919@ 指数

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =1、2、3は並進自由度

i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3856@ =4、5、6は回転自由度

デフォルト = 2.0(実数)

 

例(スプリングビーム)

/UNIT/2
unit for prop
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/PROP/TYPE13/1/2
spr_beam example
#               Mass             Inertia   skew_ID   sens_ID    Isflag     Ifail     Ileng    Ifail2
              2.7e-5                2e-4         0         0         0         0         0         0
#                 K1                  C1                  A1                  B1                  D1
                7e+4                   0                   0                   0                   0
# fct_ID11        H1  fct_ID21  fct_ID31  fct_ID41                    delta_min1          delta_max1
         0         0         0         0         0                             0                   0
#                 F1                  E1             Ascale1             Hscale1
                   0                   0                   0                   0
#                 K2                  C2                  A2                  B2                  D2
                7e+4                   0                   0                   0                   0
# fct_ID12        H2  fct_ID22  fct_ID32  fct_ID42                    delta_min2          delta_max2
         0         0         0         0         0                             0                   0
#                 F2                  E2             Ascale2             Hscale2
                   0                   0                   0                   0
#                 K3                  C3                  A3                  B3                  D3
                7e+4                   0                   0                   0                   0
# fct_ID13        H3  fct_ID23  fct_ID33  fct_ID43                    delta_min3          delta_max3
         0         0         0         0         0                             0                   0
#                 F3                  E3             Ascale3             Hscale3
                   0                   0                   0                   0
#                 K4                  C4                  A4                  B4                  D4
                1e+5                   0                   0                   0                   0
# fct_ID14        H4  fct_ID24  fct_ID34  fct_ID44                    delta_min4          delta_max4
         0         0         0         0         0                             0                   0
#                 F4                  E4             Ascale4             Hscale4
                   0                   0                   0                   0
#                 K5                  C5                  A5                  B5                  D5
                1e+5                   0                   0                   0                   0
# fct_ID15        H5  fct_ID25  fct_ID35  fct_ID45                    delta_min5          delta_max5
         0         0         0         0         0                             0                   0
#                 F5                  E5             Ascale5             Hscale5
                   0                   0                   0                   0
#                 K6                  C6                  A6                  B6                  D6
                1e+5                   0                   0                   0                   0
# fct_ID16        H6  fct_ID26  fct_ID36  fct_ID46                    delta_min6          delta_max6
         0         0         0         0         0                             0                   0
#                 F6                  E6             Ascale6             Hscale6
                   0                   0                   0                   0
#                 V0              Omega0               F_cut   Fsmooth
                   0                   0                   0         0
#                  C                   n               alpha                beta
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
                   0                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA

コメント

  1. 自由度(DOF)ごとに繰り返される入力 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ は、次の方向で定義されます:
    • i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =1: 引張 / 圧縮
    • i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =2: せん断xy
    • i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =3: せん断xz
    • i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =4: ねじり
    • i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =5: 曲げy
    • i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =6: 曲げz
  2. スプリングの X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHybaaaa@373F@ 方向は、スプリングの節点N1およびN2を使用して定義します。
    スプリングの節点N3が定義されている場合、スプリングの Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHzbGbau aaaaa@374C@ 方向は、スプリングの節点N1およびN3を使用して定義します。N3、N2、およびN1は線状になるべきではありません。

    prop_spr_beam14
    図 1.
    • Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHAbaaaa@3741@ 方向は次のようになります:(1)
      Z = X Λ Y
    • 要素の入力に節点N3の定義がなく、/PROP/TYPE23 (SPR_MAT)にスキューシステムが定義されている場合、 Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHAbaaaa@3741@ 方向は次のようになります:(2)
      Z = X Λ Y skew
    • 節点N3もスキューシステムも入力で定義されていない場合、 Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHAbaaaa@3741@ 方向は次のようになります:(3)
      Z = X Λ Y global
    スプリングの局所 X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHzbaaaa@3740@ 座標の方向と Y g l o b a l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHzbWaaS baaSqaaiaadEgacaWGSbGaam4BaiaadkgacaWGHbGaamiBaaqabaaa aa@3CFC@ 軸が同一線上にある場合を除き、次のようになります。(4)
    Z = X Λ X global
    最終的に Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHzbaaaa@3740@ 方向は次のようになります:(5)
    Y = Z Λ X
  3. スプリングはsens_IDで定義されIsflagに依存するセンサーによってアクティブ化 / 非アクティブ化されます。
    • Isflag = 0の場合、スプリング要素はsens_IDでアクティブ化され、非アクティブ化されません。スプリングの初期長さは、時間=0におけるスプリング長に基づきます。
    • Isflag = 1の場合、スプリング要素はsens_IDで非アクティブ化され、アクティブ化されません。スプリングの初期長さは、時間=0におけるスプリング長に基づきます。
    • Isflag = 2の場合、スプリングはsens_IDでアクティブ化 / 非アクティブ化され、複数回、アクティブ化状態を切り替えられます。センサーがアクティブの場合、スプリングはアクティブ、センサーが非アクティブの場合はスプリングは非アクティブです。スプリングの初期長さ( l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGSbWaaSbaaSqaaiaaicdaaeqaaaaa@3AAE@ )は、センサーがアクティブになる時間におけるスプリングの節点間の距離です。
  4. Ileng = 1の場合、スプリングのプロパティはスプリングの初期長さに基づきます。次のとおり入力される必要があります:
    M = m l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaey ypa0ZaaSaaaeaacaWGTbaabaGaamiBamaaBaaaleaacaaIWaaabeaa aaaaaa@3B0F@ K = k * l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0Jaam4AaiaacQcacaWGSbWaaSbaaSqaaiaaicdaaeqaaaaa@3BA9@
    C = c * l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbGaey ypa0Jaam4yaiaacQcacaWGSbWaaSbaaSqaaiaaicdaaeqaaaaa@3B99@  
    各スプリングはモデル内で以下のプロパティを有するようになります:
    m = M l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbGaey ypa0JaamytaiabgwSixlaadYgadaWgaaWcbaGaaGimaaqabaaaaa@3D49@ k = K l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaey ypa0ZaaSaaaeaacaWGlbaabaGaamiBamaaBaaaleaacaaIWaaabeaa aaaaaa@3B0B@
    c = C l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0ZaaSaaaeaacaWGdbaabaGaamiBamaaBaaaleaacaaIWaaabeaa aaaaaa@3AFB@  
    ここで、
    M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@
    スプリングプロパティ欄に入力されるスプリングの値
    m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@
    スプリングの実際の物理的質量、剛性および減衰
    l 0
    スプリングの節点N1とN2の間の距離である初期スプリング長
    δ min 1  and  δ max 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda qhaaWcbaGaciyBaiaacMgacaGGUbaabaGaaGymaaaakiaabccacaqG HbGaaeOBaiaabsgacaqGGaGaeqiTdq2aa0baaSqaaiGac2gacaGGHb GaaiiEaaqaaiaaigdaaaaaaa@452A@
    工学ひずみとして入力される破壊値
  5. 力とモーメントの計算詳細については、ユーザーズガイド剛性定式化をご参照ください。

    Ileng = 0で、並進自由度 i =1、2、3の場合、変位を使用してスプリングの力を決定し、回転自由度 i =4、5、6に対する回転角度(ラジアン)を使用してスプリングのモーメントを決定します。

    スプリングの力とモーメントの値は次のように計算されます:
    • 線形スプリングの場合:

      F ( δ ) = K i δ i + C i δ ˙ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGgbWaae WaaeaacqaH0oazaiaawIcacaGLPaaacqGH9aqpcaWGlbWaaSbaaSqa aiaadMgaaeqaaOGaeqiTdq2aaWbaaSqabeaacaWGPbaaaOGaey4kaS Iaam4qamaaBaaaleaacaWGPbaabeaakiqbes7aKzaacaWaaWbaaSqa beaacaWGPbaaaaaa@45B3@ で、 i =1,2,3

      M ( θ ) = K i θ i + C i θ ˙ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGnbWaae WaaeaacqaH4oqCaiaawIcacaGLPaaacqGH9aqpcaWGlbWaaSbaaSqa aiaadMgaaeqaaOGaeqiUde3aaWbaaSqabeaacaWGPbaaaOGaey4kaS Iaam4qamaaBaaaleaacaWGPbaabeaakiqbeI7aXzaacaWaaWbaaSqa beaacaWGPbaaaaaa@45ED@ で、 i =4,5,6

    • 非線形スプリング:

      F ( δ ) = f ( δ i A s c a l e i ) [ A i + B i ln | δ ˙ i D i | + E i g ( δ ˙ i F i ) ] + C i δ ˙ i + H s c a l e i h ( δ ˙ i F i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGgbWaae WaaeaacqaH0oazaiaawIcacaGLPaaacqGH9aqpciGGMbWaaeWaaeaa daWcaaqaaiabes7aKnaaCaaaleqabaGaamyAaaaaaOqaaiaadgeaca WGZbGaam4yaiaadggacaWGSbGaamyzamaaBaaaleaacaWGPbaabeaa aaaakiaawIcacaGLPaaadaWadaqaaiaadgeadaWgaaWcbaGaamyAaa qabaGccqGHRaWkcaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaciiBaiaa c6gadaabdaqaamaalaaabaGafqiTdqMbaiaadaahaaWcbeqaaiaadM gaaaaakeaacaWGebWaaSbaaSqaaiaadMgaaeqaaaaaaOGaay5bSlaa wIa7aiabgUcaRiaadweadaWgaaWcbaGaamyAaaqabaGcciGGNbWaae WaaeaadaWcaaqaaiqbes7aKzaacaWaaWbaaSqabeaacaWGPbaaaaGc baGaamOramaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaai aawUfacaGLDbaacqGHRaWkcaWGdbWaaSbaaSqaaiaadMgaaeqaaOGa fqiTdqMbaiaadaahaaWcbeqaaiaadMgaaaGccqGHRaWkcaWGibGaam 4CaiaadogacaWGHbGaamiBaiaadwgadaWgaaWcbaGaamyAaaqabaGc ciGGObWaaeWaaeaadaWcaaqaaiqbes7aKzaacaWaaWbaaSqabeaaca WGPbaaaaGcbaGaamOramaaBaaaleaacaWGPbaabeaaaaaakiaawIca caGLPaaaaaa@762D@ で、 i =1,2,3

      M ( θ ) = f ( θ i A s c a l e i ) [ A i + B i ln | θ ˙ i D i | + E i g ( θ ˙ i F i ) ] + C i θ ˙ i + H s c a l e i h ( θ ˙ i F i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGnbWaae WaaeaacqaH4oqCaiaawIcacaGLPaaacqGH9aqpciGGMbWaaeWaaeaa daWcaaqaaiabeI7aXnaaCaaaleqabaGaamyAaaaaaOqaaiaadgeaca WGZbGaam4yaiaadggacaWGSbGaamyzamaaBaaaleaacaWGPbaabeaa aaaakiaawIcacaGLPaaadaWadaqaaiaadgeadaWgaaWcbaGaamyAaa qabaGccqGHRaWkcaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaciiBaiaa c6gadaabdaqaamaalaaabaGafqiUdeNbaiaadaahaaWcbeqaaiaadM gaaaaakeaacaWGebWaaSbaaSqaaiaadMgaaeqaaaaaaOGaay5bSlaa wIa7aiabgUcaRiaadweadaWgaaWcbaGaamyAaaqabaGcciGGNbWaae WaaeaadaWcaaqaaiqbeI7aXzaacaWaaWbaaSqabeaacaWGPbaaaaGc baGaamOramaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaai aawUfacaGLDbaacqGHRaWkcaWGdbWaaSbaaSqaaiaadMgaaeqaaOGa fqiUdeNbaiaadaahaaWcbeqaaiaadMgaaaGccqGHRaWkcaWGibGaam 4CaiaadogacaWGHbGaamiBaiaadwgadaWgaaWcbaGaamyAaaqabaGc ciGGObWaaeWaaeaadaWcaaqaaiqbeI7aXzaacaWaaWbaaSqabeaaca WGPbaaaaGcbaGaamOramaaBaaaleaacaWGPbaabeaaaaaakiaawIca caGLPaaaaaa@769A@ で、 i =4,5,6

      ここで、
      • δ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda ahaaWcbeqaaiaadMgaaaaaaa@391E@ l 0 < δ i < + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislca WGSbWaaSbaaSqaaiaaicdaaeqaaOGaeyipaWJaeqiTdq2aaWbaaSqa beaacaWGPbaaaOGaeyipaWJaey4kaSIaeyOhIukaaa@4051@ )は対応する並進自由度に対するスプリング要素の現在の長さ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbaaaa@374F@ と初期の長さ l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbWaaS baaSqaaiaaicdaaeqaaaaa@3835@ との差です。
      • θ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda ahaaWcbeqaaiaadMgaaaaaaa@392F@ は、対応する回転自由度に対するラジアンで表された相対角度です。
      • 線形スプリングの場合、 f ( δ ) , g ( δ ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaae WaaeaacqaH0oazaiaawIcacaGLPaaacaGGSaGaaGzaVlaaysW7ciGG NbWaaeWaaeaacuaH0oazgaGaaaGaayjkaiaawMcaaaaa@4263@ h ( δ ˙ ) , ( f ( θ ) , g ( θ ˙ ) and h ( θ ˙ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGObWaae WaaeaacuaH0oazgaGaaaGaayjkaiaawMcaaiaacYcadaqadaqaaiGa cAgadaqadaqaaiabeI7aXbGaayjkaiaawMcaaiaacYcacaaMe8Uaci 4zamaabmaabaGafqiUdeNbaiaaaiaawIcacaGLPaaacaaMe8Uaaeyy aiaab6gacaqGKbGaciiAamaabmaabaGafqiUdeNbaiaaaiaawIcaca GLPaaaaiaawIcacaGLPaaaaaa@4FD8@ は0の関数になり、 A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaadMgaaeqaaaaa@383E@ B i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaadMgaaeqaaaaa@383E@ E i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaadMgaaeqaaaaa@383E@ 、および H s c a l e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaam 4CaiaadogacaWGHbGaamiBaiaadwgadaWgaaWcbaGaamyAaaqabaaa aa@3CE6@ は考慮されません。
      • 剛性関数 f ( δ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaae WaaeaacqaH0oazaiaawIcacaGLPaaaaaa@3A78@ (または f ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaae WaaeaacqaH4oqCaiaawIcacaGLPaaaaaa@3A89@ )が要求された場合、 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ は除荷の勾配としてのみ使用されます。
      • K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ が関数 f ( δ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaae WaaeaacqaH0oazaiaawIcacaGLPaaaaaa@3A78@ または f ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaae WaaeaacqaH4oqCaiaawIcacaGLPaaaaaa@3A89@ の最大勾配よりも低い場合( K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ は降伏曲線の最大勾配と一致しません)、 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3730@ は降伏曲線の最大勾配に設定されます。

    Ileng =1で、並進自由度 i =1、2、3の場合、工学ひずみ(単位長さあたりの伸び)を使用してスプリングの力を決定し、回転自由度 i =4、5、6に対する単位長さあたりの回転を使用してスプリングのモーメントを決定します。スプリングのパラメータはスプリングの初期長さに関係付けられます。

    スプリングの力とモーメントは次のように計算されます。
    • F ( ε ) = f ( ε i A s c a l e i ) [ A i + B i ln ( max ( 1 , | ε ˙ i D i | ) ) + E i g ( ε ˙ i F i ) ] + C i ε ˙ i + H s c a l e i h ( ε ˙ i F i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGgbWaae WaaeaacqaH1oqzaiaawIcacaGLPaaacqGH9aqpciGGMbWaaeWaaeaa daWcaaqaaiabew7aLnaaCaaaleqabaGaamyAaaaaaOqaaiaadgeaca WGZbGaam4yaiaadggacaWGSbGaamyzamaaBaaaleaacaWGPbaabeaa aaaakiaawIcacaGLPaaadaWadaqaaiaadgeadaWgaaWcbaGaamyAaa qabaGccqGHRaWkcaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaciiBaiaa c6gadaqadaqaaiGac2gacaGGHbGaaiiEamaabmaabaGaaGymaiaacY cadaabdaqaamaalaaabaGafqyTduMbaiaadaahaaWcbeqaaiaadMga aaaakeaacaWGebWaaSbaaSqaaiaadMgaaeqaaaaaaOGaay5bSlaawI a7aaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaadweadaWg aaWcbaGaamyAaaqabaGcciGGNbWaaeWaaeaadaWcaaqaaiqbew7aLz aacaWaaWbaaSqabeaacaWGPbaaaaGcbaGaamOramaaBaaaleaacaWG PbaabeaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHRaWkca WGdbWaaSbaaSqaaiaadMgaaeqaaOGafqyTduMbaiaadaahaaWcbeqa aiaadMgaaaGccqGHRaWkcaWGibGaam4CaiaadogacaWGHbGaamiBai aadwgadaWgaaWcbaGaamyAaaqabaGcciGGObWaaeWaaeaadaWcaaqa aiqbew7aLzaacaWaaWbaaSqabeaacaWGPbaaaaGcbaGaamOramaaBa aaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaaa@7D8A@ で、 i =1,2,3
    • M ( θ l 0 ) = f ( θ l 0 i A s c a l e i ) [ A i + B i ln ( max ( 1 , | θ ˙ l 0 i D i | ) ) + E i g ( θ ˙ l 0 i F i ) ] + C i θ l 0 i + H s c a l e i h ( θ ˙ l 0 i F i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGnbWaae WaaeaadaWcaaqaaiabeI7aXbqaaiaadYgadaWgaaWcbaGaaGimaaqa baaaaaGccaGLOaGaayzkaaGaeyypa0JaciOzamaabmaabaWaaSaaae aadaWcaaqaaiabeI7aXbqaaiaadYgadaWgaaWcbaGaaGimaaqabaaa aOWaaWbaaSqabeaacaWGPbaaaaGcbaGaamyqaiaadohacaWGJbGaam yyaiaadYgacaWGLbWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaa wMcaamaadmaabaGaamyqamaaBaaaleaacaWGPbaabeaakiabgUcaRi aadkeadaWgaaWcbaGaamyAaaqabaGcciGGSbGaaiOBamaabmaabaGa ciyBaiaacggacaGG4bWaaeWaaeaacaaIXaGaaiilamaaemaabaWaaS aaaeaadaWcaaqaaiqbeI7aXzaacaaabaGaamiBamaaBaaaleaacaaI WaaabeaaaaGcdaahaaWcbeqaaiaadMgaaaaakeaacaWGebWaaSbaaS qaaiaadMgaaeqaaaaaaOGaay5bSlaawIa7aaGaayjkaiaawMcaaaGa ayjkaiaawMcaaiabgUcaRiaadweadaWgaaWcbaGaamyAaaqabaGcci GGNbWaaeWaaeaadaWcaaqaamaalaaabaGafqiUdeNbaiaaaeaacaWG SbWaaSbaaSqaaiaaicdaaeqaaaaakmaaCaaaleqabaGaamyAaaaaaO qaaiaadAeadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaa caGLBbGaayzxaaGaey4kaSIaam4qamaaBaaaleaacaWGPbaabeaakm aalaaabaGaeqiUdehabaGaamiBamaaBaaaleaacaaIWaaabeaaaaGc daahaaWcbeqaaiaadMgaaaGccqGHRaWkcaWGibGaam4Caiaadogaca WGHbGaamiBaiaadwgadaWgaaWcbaGaamyAaaqabaGcciGGObWaaeWa aeaadaWcaaqaamaalaaabaGafqiUdeNbaiaaaeaacaWGSbWaaSbaaS qaaiaaicdaaeqaaaaakmaaCaaaleqabaGaamyAaaaaaOqaaiaadAea daWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@8988@ で、 i =4,5,6
    ここで、
    ε i = δ i l 0
    工学ひずみ
    θ l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai abeI7aXbqaaiaadYgadaWgaaWcbaGaaGimaaqabaaaaaaa@39FB@
    回転を元のスプリング長で割った値
  6. 時間ステップ計算
    • 並進自由度の時間ステップは次のように計算されます:(6)
      Δ t i = Mmax( K i )+ C i 2 C i max( K i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaadaGcaaqa aiaad2eacqGHflY1ciGGTbGaaiyyaiaacIhacaGGOaGaam4samaaBa aaleaacaWGPbaabeaakiaacMcacqGHRaWkcaWGdbWaaSbaaSqaaiaa dMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHsislcaWGdb WaaSbaaSqaaiaadMgaaeqaaaGcbaGaciyBaiaacggacaGG4bGaaiik aiaadUeadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaaaa@50FF@

      ここで、 i =1、2、3

    • 回転自由度の時間ステップは次のように計算されます:(7)
      Δ t i = I max ( K ' i ) + C ' i 2 C ' i max ( K ' i )

      ここで、 i =4、5、6

    ここで、
    K ' i = max ( K t ) L 2 + max ( K i )
    C ' i = max ( C t ) L 2 + max ( C i )

    スプリングの時間ステップとして、 i =1、2、3および i =4、5、6および min ( Δ t i ) が使用されます。

  7. 破壊基準:
    • 1方向の破壊基準がIfail=0の場合、1つの方向で破壊基準のうちの1つが満たされると、スプリングは即座に壊れます:(8)
      α i ( δ i δ max i ) 1
      または(9)
      α i | δ i δ min i | 1
      ここで δ max i δ min i は、方向 i =1、2、3における破壊限界(10)
      α i ( θ i θ max i ) 1
      または(11)
      α i | θ i θ min i | 1

      ここで θ max i θ min i は、方向 i =4、5、6における破壊限界

      各方向に対して δ min i (または θ min i )は負にする必要があり、 δ max i (または θ max i )は正にする必要があります。値がゼロの場合、破壊が考慮されなくなります。

    • 多方向の破壊基準がIfail=1の場合、次の関係が満たされるとスプリングは壊れます:(12)
      i=1,2,3 α i ( δ i δ fail i ) β i + i=4,5,6 α i ( θ i θ fail i ) β i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqbqaai abeg7aHnaaBaaaleaacaWGPbaabeaakmaabmaabaWaaSaaaeaacqaH 0oazdaahaaWcbeqaaiaadMgaaaaakeaacqaH0oazdaqhaaWcbaGaam OzaiaadggacaWGPbGaamiBaaqaaiaadMgaaaaaaaGccaGLOaGaayzk aaaaleaacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaio daaeqaniabggHiLdGcdaahaaWcbeqaaiabek7aInaaBaaameaacaWG PbaabeaaaaGccqGHRaWkdaaeqbqaaiabeg7aHnaaBaaaleaacaWGPb aabeaakmaabmaabaWaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaadMga aaaakeaacqaH4oqCdaqhaaWcbaGaamOzaiaadggacaWGPbGaamiBaa qaaiaadMgaaaaaaaGccaGLOaGaayzkaaaaleaacaWGPbGaeyypa0Ja aGinaiaacYcacaaI1aGaaiilaiaaiAdaaeqaniabggHiLdGcdaahaa Wcbeqaaiabek7aInaaBaaameaacaWGPbaabeaaaaGccqGHLjYScaaI Xaaaaa@6A7C@
      • “古い”変位定式化(Ifail2 = 0)では、係数 α i β i はそれぞれ1.0と2.0に等しくなります。
      • 新しい変位定式化(Ifail2 =1)では、次のように並進自由度に対して速度に依存する破壊限界をモデル化することが可能です:(13)
        δ f a i l i = { δ max i + c i | v i v 0 | n i , i f ( δ i > 0 ) δ min i c i | v i v 0 | n i , i f ( δ i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda qhaaWcbaGaamOzaiaadggacaWGPbGaamiBaaqaaiaadMgaaaGccqGH 9aqpdaGabaqaauaabeqaceaaaeaacqaH0oazdaqhaaWcbaGaciyBai aacggacaGG4baabaGaamyAaaaakiabgUcaRiaadogadaWgaaWcbaGa amyAaaqabaGccqGHflY1daabdaqaamaalaaabaGaamODamaaCaaale qabaGaamyAaaaaaOqaaiaadAhadaWgaaWcbaGaaGimaaqabaaaaaGc caGLhWUaayjcSdWaaWbaaSqabeaacaWGUbGaamyAaaaakiaacYcaca WGPbGaamOzamaabmaabaGaeqiTdq2aaWbaaSqabeaacaWGPbaaaOGa eyOpa4JaaGimaaGaayjkaiaawMcaaaqaaiabes7aKnaaDaaaleaaci GGTbGaaiyAaiaac6gaaeaacaWGPbaaaOGaeyOeI0Iaam4yamaaBaaa leaacaWGPbaabeaakiabgwSixpaaemaabaWaaSaaaeaacaWG2bWaaW baaSqabeaacaWGPbaaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaa aaaakiaawEa7caGLiWoadaahaaWcbeqaaiaad6gacaWGPbaaaOGaai ilaiaadMgacaWGMbWaaeWaaeaacqaH0oazdaahaaWcbeqaaiaadMga aaGccqGHKjYOcaaIWaaacaGLOaGaayzkaaaaaaGaay5Eaaaaaa@794D@
        ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =1、2、3(14)
        θ i f a i l = { θ max i + c i | ω i ω 0 | n i , i f ( θ i > 0 ) θ min i c i | ω i ω 0 | n i , i f ( θ i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda ahaaWcbeqaaiaadMgaaaGcdaWgaaWcbaGaamOzaiaadggacaWGPbGa amiBaaqabaGccqGH9aqpdaGabaqaauaabeqaceaaaeaacqaH4oqCda qhaaWcbaGaciyBaiaacggacaGG4baabaGaamyAaaaakiabgUcaRiaa dogadaWgaaWcbaGaamyAaaqabaGccqGHflY1daabdaqaamaalaaaba GaeqyYdC3aaWbaaSqabeaacaWGPbaaaaGcbaGaeqyYdC3aaSbaaSqa aiaaicdaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamOBai aadMgaaaGccaGGSaGaaGjbVlaadMgacaWGMbGaaGjbVlaaykW7daqa daqaaiabeI7aXnaaCaaaleqabaGaamyAaaaakiabg6da+iaaicdaai aawIcacaGLPaaaaeaacqaH4oqCdaqhaaWcbaGaciyBaiaacMgacaGG UbaabaGaamyAaaaakiabgkHiTiaadogadaWgaaWcbaGaamyAaaqaba GccqGHflY1daabdaqaamaalaaabaGaeqyYdC3aaWbaaSqabeaacaWG PbaaaaGcbaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaaaaaOGaay5bSl aawIa7amaaCaaaleqabaGaamOBaiaadMgaaaGccaGGSaGaaGjbVlaa dMgacaWGMbGaaGjbVlaaykW7daqadaqaaiabeI7aXnaaCaaaleqaba GaamyAaaaakiabgsMiJkaaicdaaiaawIcacaGLPaaaaaaacaGL7baa aaa@866A@

        ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =4、5、6

        ここで、 δ min i または δ max i は静的変位破壊限界(5行目、8行目および11行目)、 ν 0 は基準速度です。

        ここで、 θ min i または θ max i は静的回転破壊限界(14行目、17行目および20行目)、 ω 0 は基準速度です。

        相対速度係数 c i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadMgaaeqaaaaa@3860@ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =1、2、3)は変位の単位を持ち、 c i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadMgaaeqaaaaa@3860@ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =4、5、6)は回転の単位を持ちます。

      • 力またはモーメントの破壊基準は、Ifail2=2でアクティブになります:(15)
        δ i f a i l = { δ max i + c i | v i v 0 | n i , i f ( δ i > 0 ) δ min i c i | v i v 0 | n i , i f ( δ i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda ahaaWcbeqaaiaadMgaaaGcdaWgaaWcbaGaamOzaiaadggacaWGPbGa amiBaaqabaGccqGH9aqpdaGabaqaauaabeqaceaaaeaacqaH0oazda qhaaWcbaGaciyBaiaacggacaGG4baabaGaamyAaaaakiabgUcaRiaa dogadaWgaaWcbaGaamyAaaqabaGccqGHflY1daabdaqaamaalaaaba GaamODamaaCaaaleqabaGaamyAaaaaaOqaaiaadAhadaWgaaWcbaGa aGimaaqabaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaWGUbGaam yAaaaakiaacYcacaWGPbGaamOzamaabmaabaGaeqiTdq2aaWbaaSqa beaacaWGPbaaaOGaeyOpa4JaaGimaaGaayjkaiaawMcaaaqaaiabes 7aKnaaDaaaleaaciGGTbGaaiyAaiaac6gaaeaacaWGPbaaaOGaeyOe I0Iaam4yamaaBaaaleaacaWGPbaabeaakiabgwSixpaaemaabaWaaS aaaeaacaWG2bWaaWbaaSqabeaacaWGPbaaaaGcbaGaamODamaaBaaa leaacaaIWaaabeaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaad6 gacaWGPbaaaOGaaiilaiaadMgacaWGMbWaaeWaaeaacqaH0oazdaah aaWcbeqaaiaadMgaaaGccqGHKjYOcaaIWaaacaGLOaGaayzkaaaaaa Gaay5Eaaaaaa@7983@
        ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =1、2、3(力の基準)(16)
        θ i f a i l = { θ max i + c i | ω i ω 0 | n i , i f ( θ i > 0 ) θ min i c i | ω i ω 0 | n i , i f ( θ i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda ahaaWcbeqaaiaadMgaaaGcdaWgaaWcbaGaamOzaiaadggacaWGPbGa amiBaaqabaGccqGH9aqpdaGabaqaauaabeqaceaaaeaacqaH4oqCda qhaaWcbaGaciyBaiaacggacaGG4baabaGaamyAaaaakiabgUcaRiaa dogadaWgaaWcbaGaamyAaaqabaGccqGHflY1daabdaqaamaalaaaba GaeqyYdC3aaWbaaSqabeaacaWGPbaaaaGcbaGaeqyYdC3aaSbaaSqa aiaaicdaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamOBai aadMgaaaGccaGGSaGaaGjbVlaadMgacaWGMbGaaGjbVlaaykW7daqa daqaaiabeI7aXnaaCaaaleqabaGaamyAaaaakiabg6da+iaaicdaai aawIcacaGLPaaaaeaacqaH4oqCdaqhaaWcbaGaciyBaiaacMgacaGG UbaabaGaamyAaaaakiabgkHiTiaadogadaWgaaWcbaGaamyAaaqaba GccqGHflY1daabdaqaamaalaaabaGaeqyYdC3aaWbaaSqabeaacaWG PbaaaaGcbaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaaaaaOGaay5bSl aawIa7amaaCaaaleqabaGaamOBaiaadMgaaaGccaGGSaGaaGjbVlaa dMgacaWGMbGaaGjbVlaaykW7daqadaqaaiabeI7aXnaaCaaaleqaba GaamyAaaaakiabgsMiJkaaicdaaiaawIcacaGLPaaaaaaacaGL7baa aaa@866A@

        ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =4、5、6(モーメントの基準)

        ここで、 δ min i または δ max i は静的破壊限界の力(5行目、8行目および11行目)、 ν 0 は基準速度です。

        ここで、 θ min i または θ max i は静的破壊限界のモーメント(14行目、17行目および20行目)、 ω 0 は基準速度です。

        相対速度係数 c i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadMgaaeqaaaaa@3860@ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =1、2、3)は力の単位を持ち、 c i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadMgaaeqaaaaa@3860@ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =4、5、6)は運動量の単位を持ちます。

      • エネルギーの破壊基準はIfail2= 3でアクティブになります:(17)
        δ i f a i l = δ max i + c i | v i v 0 | n i , i f ( δ i > 0 )

        ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =1、2、3

        (18)
        θ i f a i l = θ max i + c i | ω i ω 0 | n i , i f ( θ i > 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda ahaaWcbeqaaiaadMgaaaGcdaWgaaWcbaGaamOzaiaadggacaWGPbGa amiBaaqabaGccqGH9aqpcqaH4oqCdaqhaaWcbaGaciyBaiaacggaca GG4baabaGaamyAaaaakiabgUcaRiaadogadaWgaaWcbaGaamyAaaqa baGccqGHflY1daabdaqaamaalaaabaGaeqyYdC3aaWbaaSqabeaaca WGPbaaaaGcbaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaaaaaOGaay5b SlaawIa7amaaCaaaleqabaGaamOBaiaadMgaaaGccaGGSaGaamyAai aadAgadaqadaqaaiabeI7aXnaaCaaaleqabaGaamyAaaaakiabg6da +iaaicdaaiaawIcacaGLPaaaaaa@5CB4@

        ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ =4、5、6

        ここで、 δ max i は静的破壊限界の並進エネルギー(5行目、8行目および11行目)、 ν 0 は基準速度です。

        ここで、 θ max i は静的破壊限界の回転エネルギー(14行目、17行目および20行目)、 ω 0 は基準速度です。

        この場合、変位値は正の破壊併進エネルギーの値に置き換えられ、回転値は正の破壊回転エネルギーの値に置き換えられます。

        相対速度係数 c i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadMgaaeqaaaaa@3860@ はエネルギーの単位を持ちます。

  8. センサーよるアクティブ化または非アクティブ化を伴うスプリング要素は、主にプリテンションモデルで使用されます。