/MAT/LAW41/1

ブロックフォーマットキーワード この材料則は、反応性材料の発火と延焼のモデルを使用して爆発物を記述します。

Lee-Tarverモデルは、衝撃波面の通過経路上にある局所的なホットスポットで発火し、外側に延焼するという前提に基づきます。この反応速度は、爆燃プロセスと同様に圧力と表面積で制御されます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW41/mat_ID/unit_IDまたは/MAT/LEE_TARVER/mat_ID/unit_ID
mat_title
ρ i ρ 0            
Ireac                  
A r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ B r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ R 1 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 2 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 3 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@
A p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ B p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ R 1 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 2 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 3 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@
C ν r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ C ν p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ E Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGrbaabeaaaaa@37C3@        
itr   ε check        
rki ex ri        
rkg yg zg ex1    
k X tol        
grow2 ex2 yg2 zg2    
ccrit fmxig fmxgr fmngr    
G Ti            

定義

フィールド 内容 SI 単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子.

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度

(実数)

[ kg m 3 ]
ρ 0 E.O.S(状態方程式)で使用される基準密度

デフォルト = ρ i (実数)

[ kg m 3 ]
Ireac 発火と延焼モデルのフラグ
= 1(デフォルト)
Lee_Tarverの場合
= 2
Dynaの場合

(整数)

 
A r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ 試薬のJWLパラメータ

(実数)

[ Pa ]
B r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ 試薬のJWLパラメータ

(実数)

[ Pa ]
R 1 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ 試薬のJWLパラメータ

(実数)

 
R 2 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ 試薬のJWLパラメータ

(実数)

 
R 3 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ 試薬のJWLパラメータ 4

(実数)

[ J m 3 K ]
A p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ 生成物のJWLパラメータ

(実数)

[ Pa ]
B p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ 生成物のJWLパラメータ

(実数)

[ Pa ]
R 1 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ 生成物のJWLパラメータ

(実数)

 
R 2 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ 生成物のJWLパラメータ

(実数)

 
R 3 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ 生成物のJWLパラメータ

(実数)

[ J m 3 K ]
C ν r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ 熱容量試薬

(実数)

[ J m 3 K ]
C ν p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ 熱容量生成物

(実数)

[ J m 3 K ]
E Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGrbaabeaaaaa@37C3@ 熱反応

(実数)

[ J m 3 ]
itr 混合則の最大反復回数

デフォルト = 80(整数)

 
ε 流体力学的バランスの精度

デフォルト = 10-3(実数)

 
check 生成物の質量分率のリミッタ

デフォルト = 10-5(実数)

 
rki 開始相の化学的運動係数(Lee-TarverおよびDyna-2D)

(実数)

 
ex 開始相の化学的運動係数(Lee-TarverおよびDyna-2D)

(実数)

 
ri 開始相の化学的運動係数(Lee-TarverおよびDyna-2D)

(実数)

 
rkg 成長相の化学的運動係数(Lee-TarverおよびDyna-2D)

(実数)

 
yg 成長相の化学的運動係数(Lee-TarverおよびDyna-2D)

(実数)

 
zg 成長相の化学的運動係数(Lee-TarverおよびDyna-2D)

(実数)

[ s 1 P a Z g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiiuaiaacggadaah aaWcbeqaaiabgkHiTiaadQfadaWgaaadbaGaam4zaaqabaaaaaGcca GLBbGaayzxaaaaaa@3F92@
ex1 成長相の化学的運動係数(Dyna-2D)

(実数)

 
k 係数の数値リミッタ(Lee-TarverおよびDyna-2D)

デフォルト = 99.0(実数)

 
X 係数の数値リミッタ(Dyna-2D)

デフォルト = 99.0(実数)

 
tol 係数の数値リミッタ(Dyna-2D)

デフォルト = 0.0(実数)

 
grow2 成長相第2係数(Dyna-2D)

(実数)

[ s 1 P a Z g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiiuaiaacggadaah aaWcbeqaaiabgkHiTiaadQfadaWgaaadbaGaam4zaaqabaaaaaGcca GLBbGaayzxaaaaaa@3F92@
ex2 成長相第2係数(Dyna-2D)

(実数)

 
yg2 成長相第2係数(Dyna-2D)

(実数)

 
zg2 成長相第2係数(Dyna-2D)

(実数)

 
ccrit 開始しきい値(圧縮用)(Dyna-2D)

(実数)

 
fmxig 開始しきい値(質量分率)(Dyna-2D)

(実数)

 
fmxgr 係数(Dyna-2D) 5

(実数)

 
fmngr 係数(Dyna-2D) 5

(実数)

 
G せん断係数

(実数)

[ Pa ]
Ti 初期温度

(実数)

[ K ]

例(LX17)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW41/1
LX17 (unit Mg-mm-s)
#              RHO_I               RHO_0
                1900                   0
#    Ireac
         2
#                 Ar                  Br                 R1r                 R2r                 R3r
       4930000000000       -166000000000                7.44                3.72           3.3337E-5
#                 Ap                  Bp                 R1p                 R2p                 R3p
        696000000000          2500000000                 4.4                 .94              4.3E-6
#                Cvr                 Cvp                  Eq
                2781                1000                .088
#     iter                           EPS               check
         0                             0                   0
#                rki                  ex                  ri
           100000000                   1                   4
#                rkg                  yg                  zg                 ex1
          1000000000                .371                   3                .191
#                  K                   X                 tol
                   0                   0                   0
#              grow2                 ex2                 yg2                 zg2
                   0                   1                   1                   1
#              ccrit               fmxig               fmxgr               fmngr
                   0                 .25                   1                 100
#                  G                  Ti
            75000000                 298
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. fが生成物の質量分率で、pが低減圧力の場合:
    Ireact = 1: Lee/Tarverによる“発火と延焼”(1)
    d f d t ) i = r k i ( 1 f ) e x ( ρ ρ 0 1 ) r i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaamyAaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaadUgaca WGPbaabeaakiabgwSixpaabmaabaGaaGymaiabgkHiTiaadAgaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadwgacaWG4baaaOGaeyyXIC9aae WaaeaadaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaaleaacaaIWaaa beaaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaaca WGYbWaaSbaaWqaaiaadMgaaeqaaaaaaaa@5478@
    (2)
    d f d t ) g = r k g ( 1 f ) e x f y g f z g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaam4zaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaadUgaca WGNbaabeaakiabgwSixpaabmaabaGaaGymaiabgkHiTiaadAgaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadwgacaWG4baaaOGaeyyXICTaam OzamaaCaaaleqabaGaamyEamaaBaaameaacaWGNbaabeaaaaGccqGH flY1caWGMbWaaWbaaSqabeaacaWG6bWaaSbaaWqaaiaadEgaaeqaaa aaaaa@5337@
    Ireac = 2: Dyna-2Dで導入された定式化による“発火と延焼”(3)
    d f d t ) i = r i k ( f m x i g f ) e x ( ρ ρ 0 1 c c r i t ) r i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaamyAaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaadMgaca WGRbaabeaakiabgwSixpaabmaabaGaamOzaiaad2gacaWG4bGaamyA aiaadEgacqGHsislcaWGMbaacaGLOaGaayzkaaWaaWbaaSqabeaaca WGLbGaamiEaaaakiabgwSixpaabmaabaWaaSaaaeaacqaHbpGCaeaa cqaHbpGCdaWgaaWcbaGaaGimaaqabaaaaOGaeyOeI0IaaGymaiabgk HiTiaadogacaWGJbGaamOCaiaadMgacaWG0baacaGLOaGaayzkaaWa aWbaaSqabeaacaWGYbWaaSbaaWqaaiaadMgaaeqaaaaaaaa@5E0C@
    (4)
    d f d t ) g 1 = g r o w 1 ( 1 f ) e x 1 f y g 1 P z g 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaam4zaiaaigdaaeqaaOGaeyypa0Jaam4zaiaadkhacaWGVb Gaam4DamaaBaaaleaacaaIXaaabeaakiabgwSixpaabmaabaGaaGym aiabgkHiTiaadAgaaiaawIcacaGLPaaadaahaaWcbeqaaiaadwgaca WG4bGaaGymaaaakiabgwSixlaadAgadaahaaWcbeqaaiaadMhadaWg aaadbaGaam4zaiaaigdaaeqaaaaakiabgwSixlaadcfadaahaaWcbe qaaiaadQhadaWgaaadbaGaam4zaiaaigdaaeqaaaaaaaa@57C8@
    (5)
    d f d t ) g 2 = g r o w 2 ( 1 f ) e x 2 f y g 2 P z g 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaam4zaiaaikdaaeqaaOGaeyypa0Jaam4zaiaadkhacaWGVb Gaam4DamaaBaaaleaacaaIYaaabeaakiabgwSixpaabmaabaGaaGym aiabgkHiTiaadAgaaiaawIcacaGLPaaadaahaaWcbeqaaiaadwgaca WG4bGaaGOmaaaakiabgwSixlaadAgadaahaaWcbeqaaiaadMhadaWg aaadbaGaam4zaiaaikdaaeqaaaaakiabgwSixlaadcfadaahaaWcbe qaaiaadQhadaWgaaadbaGaam4zaiaaikdaaeqaaaaaaaa@57CD@
  2. 係数grow1は、右記で初期化します; rkg
  3. 係数yg1zg1は、それぞれygzgで初期化します。
  4. 係数R3 ω は、右記の関係にあります; R 3 = ω C ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIZaaabeaakiabg2da9iabeM8a3jaadoeadaWgaaWcbaGa eqyVd4gabeaaaaa@3D40@
  5. 係数fmxgrfmngrは、生成物の質量分率に応じた成長速度のリミッターです。
  6. この材料則はALEとは適合性がありません。
  7. 熱反応エネルギー E Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGrbaabeaaaaa@37C3@ は、Fの値にかかわらず一定であると想定します。
  8. 試薬の圧力と爆発物の圧力は、以下のように修正Jones-Wilkins-Lee状態方程式を使用して計算されます:
    相対体積 v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@36F2@ については以下のようになります:(6)
    P ( v , T ) = A e R 1 v + B e R 2 v + R 3 T v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuamaabm aabaGaamODaiaacYcacaWGubaacaGLOaGaayzkaaGaeyypa0Jaamyq aiaadwgadaahaaWcbeqaaiabgkHiTiaadkfadaWgaaadbaGaaGymaa qabaWccaWG2baaaOGaey4kaSIaamOqaiaadwgadaahaaWcbeqaaiab gkHiTiaadkfadaWgaaadbaGaaGOmaaqabaWccaWG2baaaOGaey4kaS IaamOuamaaBaaaleaacaaIZaaabeaakiaadsfacaWG2baaaa@4C76@

    ここで、 v = V V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2 da9maalaaabaGaamOvaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaa aaaa@3AA4@

    μ については以下のようになります:(7)
    P ( μ , T ) = A e R 1 / ( 1 + μ ) + B e R 2 / ( 1 + μ ) + R 3 T / ( 1 + μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuamaabm aabaGaeqiVd0MaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpcaWG bbGaamyzamaaCaaaleqabaGaeyOeI0IaamOuamaaBaaameaacaaIXa aabeaaliaac+cadaqadaqaaiaaigdacqGHRaWkcqaH8oqBaiaawIca caGLPaaaaaGccqGHRaWkcaWGcbGaamyzamaaCaaaleqabaGaeyOeI0 IaamOuamaaBaaameaacaaIYaaabeaaliaac+cadaqadaqaaiaaigda cqGHRaWkcqaH8oqBaiaawIcacaGLPaaaaaGccqGHRaWkcaWGsbWaaS baaSqaaiaaiodaaeqaaOGaamivaiaac+cadaqadaqaaiaaigdacqGH RaWkcqaH8oqBaiaawIcacaGLPaaaaaa@5AED@

    ここで、 μ = ρ ρ 0 1 = 1 v 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaSaaaeaacqaHbpGCaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baaaaOGaeyOeI0IaaGymaiabg2da9maalaaabaGaaGymaaqaaiaadA haaaGaeyOeI0IaaGymaaaa@434F@ .

1 E.L.Lee and C.M.Tarver "Phenomenological model of shock initiation in heterogeneous explosives" Phy.Fluids Vol. 23, No. 12, December 1980.