/FAIL/GURSON

ブロックフォーマットキーワード 金属の塑性におけるボイドの発生と成長の観点から損傷を記述するGurson-Nahshon-Hutchinson破壊モデル。

修正されたGurson定式化では、いくつかの損傷累積項が追加されています。これらの損傷累積項は、せん断が支配的である荷重、圧縮荷重下での特別な取り扱い、損傷に伴う弾性剛性損失に関する項です。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/GURSON/mat_ID/unit_ID
q 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3817@ q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3817@           Iloc
ε n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad6gaaeqaaaaa@38BD@ As Kw        
f c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3839@ f R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3839@ f 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3839@        
Rlen Hchi          
オプションの行
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID                  

定義

フィールド 内容 SI 単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位の識別子(オプション)

(整数、最大10桁)

 
q 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3817@ 1番目のGurson損傷係数。

デフォルト = 1.5(実数)

 
q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3817@ 2番目のGurson損傷係数(最大値 = 1.02)。

デフォルト = 1.0(実数)

 
Iloc 損傷変数累積手法のフラグ。
= 0
1に設定
= 1(デフォルト)
局所損傷定式化。
= 2
微細形態法を使用した非局所損傷正則化。
= 3
Peerlings法を使用した非局所損傷正則化。

(整数)

 
ε n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaad6gaaeqaaaaa@38BD@ ボイド発生時の相当塑性ひずみ。

(実数)

 
As 線形ボイド発生勾配。

(実数)

 
Kw せん断損傷成長係数。

(実数)

 
f c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3839@ ボイド凝集時の臨界ボイド体積率。

(実数)

 
f R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3839@ 延性破壊時のボイド体積率。

(実数)

 
f 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaGaaGimaaqabaaaaa@37EC@ 初期ボイド体積率

(実数)

 
Rlen 非局所変数による影響の半径(Iloc > 1)。

(実数)

[ m ]
Hchi 非局所ペナルティパラメータ(微細形態法専用、Iloc = 2)。

(実数)

 
fail_ID (省略可能)破壊基準識別子。

(整数、最大10桁)

 

コメント

  1. Gurson損傷モデルは、弾塑性材料則/MAT/LAW104で使用する必要があります。この材料則の降伏曲面は、次の損傷進展項を追加することによって修正されています。 (1)
    ϕ= σ eq 2 σ yld 2 1+2 q 1 f * cosh( η t   q 2 Tr( σ ) 2 σ yld ) ( 2 f * ) 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy1dyMaeyypa0ZaaSaaa8aabaWdbiabeo8aZ9aadaqhaaWcbaWd biaadwgacaWGXbaapaqaa8qacaaIYaaaaaGcpaqaa8qacqaHdpWCpa Waa0baaSqaa8qacaWG5bGaamiBaiaadsgaa8aabaWdbiaaikdaaaaa aOGaeyOeI0IaaGymaiabgUcaRiaaikdacaWGXbWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiaadAgapaWaaWbaaSqabeaapeGaaiOkaaaa kiaadogacaWGVbGaam4CaiaadIgadaqadaWdaeaapeWaaSaaa8aaba WdbiabeE7aO9aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGGcGa amyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGubGaamOCam aabmaapaqaaGqad8qacaWFdpaacaGLOaGaayzkaaaapaqaa8qacaaI YaGaeq4Wdm3damaaBaaaleaapeGaamyEaiaadYgacaWGKbaapaqaba aaaaGcpeGaayjkaiaawMcaaiabgkHiTmaabmaapaqaa8qacaaIYaGa amOza8aadaahaaWcbeqaa8qacaGGQaaaaaGccaGLOaGaayzkaaWdam aaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaaIWaaaaa@69E4@
    ここで、
    q 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3817@ q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3817@
    2つのGurson-Tveergard-Needlemanパラメータ。
    f * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaGGQaaaaaaa@37F1@
    実効損傷
    η t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdG2damaaBaaaleaapeGaamiDaaWdaeqaaaaa@390B@
    次のように定義した係数:
    η t = { 0   ,     f t =   0     and     T r ( σ ) < 0 1 ,  otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdG2damaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da9maa ceaapaabaeqabaWdbiaaicdacaGGGcGaaeilaiaacckacaGGGcGaam Oza8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpcaGGGcGa aGimaiaacckacaGGGcGaaeyyaiaab6gacaqGKbGaaiiOaiaacckaca WGubGaamOCamaabmaapaqaa8qacqaHdpWCaiaawIcacaGLPaaacqGH 8aapcaaIWaaabaGaaGymaiaacYcacaqGGaGaae4BaiaabshacaqGOb GaaeyzaiaabkhacaqG3bGaaeyAaiaabohacaqGLbaaaiaawUhaaaaa @5E43@
    f t   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGGcaaaa@3988@
    増分を使用して計算する合計ボイド体積率。
    d f t =d f n +d f g +d f sh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadAgapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyyp a0JaamizaiaadAgapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaey 4kaSIaamizaiaadAgapaWaaSbaaSqaa8qacaWGNbaapaqabaGcpeGa ey4kaSIaamizaiaadAgapaWaaSbaaSqaa8qacaWGZbGaamiAaaWdae qaaaaa@4699@
    損傷係数増分の運動方程式は次のとおりです。
    • ボイド発生(微小空洞の発生)。3軸性が低い場合は低下。(2)
      d f n = { A s   d ε p ,     ε p ε n     and     τ 0 A s   ( 1 + 3 τ ) d ε p ,   ε p ε n     and   1 3 τ < 0 0 ,   ε p < ε n     and     τ <   1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadAgapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaeyyp a0Zaaiqaa8aabaqbaeqabmqaaaqaa8qacaWGbbWdamaaBaaaleaape Gaam4CaaWdaeqaaOWdbiaacckacaWGKbGaeqyTdu2damaaBaaaleaa peGaamiCaaWdaeqaaOWdbiaacYcacaGGGcGaaeiiaiabew7aL9aada WgaaWcbaWdbiaadchaa8aabeaak8qacqGHLjYScqaH1oqzpaWaaSba aSqaa8qacaWGUbaapaqabaGcpeGaaiiOaiaacckacaqGHbGaaeOBai aabsgacaGGGcGaaiiOaiabes8a0jabgwMiZkaaicdaa8aabaWdbiaa dgeapaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaaiiOamaabmaapa qaa8qacaaIXaGaey4kaSIaaG4maiabes8a0bGaayjkaiaawMcaaiaa dsgacqaH1oqzpaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaaiilai aabccacqaH1oqzpaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyyz ImRaeqyTdu2damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacckaca GGGcGaaeyyaiaab6gacaqGKbGaaiiOaiabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaaIZaaaaiabgsMiJkabes8a0jabgYda8iaaic daa8aabaWdbiaaicdacaGGSaGaaeiiaiabew7aL9aadaWgaaWcbaWd biaadchaa8aabeaak8qacqGH8aapcqaH1oqzpaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeGaaiiOaiaacckacaqGHbGaaeOBaiaabsgacaGG GcGaaiiOaiabes8a0jabgYda8iaacckacqGHsisldaWcaaWdaeaape GaaGymaaWdaeaapeGaaG4maaaaaaaacaGL7baaaaa@9488@
      ここで、 τ は次のように応力に定義した3軸性です。(3)
      τ=  Tr( σ ) 3  σ eq MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0JaaiiOamaalaaapaqaa8qacaWGubGaamOCamaa bmaapaqaaGqad8qacaWFdpaacaGLOaGaayzkaaaapaqaa8qacaaIZa GaaiiOaiabeo8aZ9aadaWgaaWcbaWdbiaadwgacaWGXbaapaqabaaa aaaa@44F2@


      図 1. 空洞の発生
    • 3軸性が高い場合のボイド成長:(4)
      d f g =( 1 f t ) Tr( ε p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadAgapaWaaSbaaSqaa8qacaWGNbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiaaigdacqGHsislcaWGMbWdamaaBaaaleaape GaamiDaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacckacaWGubGaamOC amaabmaapaqaaGqad8qacaWF1oWdamaaBaaaleaapeGaamiCaaWdae qaaaGcpeGaayjkaiaawMcaaaaa@4738@


      図 2. 3軸性が高い場合の空洞の成長
    • せん断が支配的な3軸性が低い場合の追加のせん断ボイド成長: (5)
      d f s h = K w f t   w ( θ )   S   : ε p σ e q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadAgapaWaaSbaaSqaa8qacaWGZbGaamiAaaWdaeqaaOWd biabg2da9iaadUeapaWaaSbaaSqaa8qacaWG3baapaqabaGcpeGaam Oza8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGGcGaam4Damaa bmaapaqaa8qacqaH4oqCaiaawIcacaGLPaaacaGGGcWaaSaaa8aaba acbmWdbiaa=nfacaWFGcGaaiOoaiaa=v7apaWaaSbaaSqaa8qacaWG WbaapaqabaaakeaapeGaeq4Wdm3damaaBaaaleaapeGaamyzaiaadg haa8aabeaaaaaaaa@5006@
      ここで、 w ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Damaabmaapaqaa8qacqaH4oqCaiaawIcacaGLPaaaaaa@3A66@ はLode角に依存する重み関数です。 (6)
      w ( θ ) = 1 ( cos ( 3 θ ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Damaabmaapaqaa8qacqaH4oqCaiaawIcacaGLPaaacqGH9aqp caaIXaGaeyOeI0YaaeWaa8aabaWdbiaabogacaqGVbGaae4Camaabm aapaqaa8qacaaIZaGaeqiUdehacaGLOaGaayzkaaaacaGLOaGaayzk aaWdamaaCaaaleqabaWdbiaaikdaaaaaaa@46AD@


      図 3. 3軸性が低い場合の空洞の成長
      f t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3839@ によって臨界ボイド体積率 f c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3839@ に達したときの空洞の凝集を表現するには、実効損傷(この損傷は応力の計算に影響します) f * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaGGQaaaaaaa@37F1@ をモデルに導入します。その式は、次のように f t   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGGcaaaa@3988@ に依存します。 (7)
      f * = f ( f t ) = { f t ,     f t < f c f c + ( 1 q 1 f c ) ( f t f c ) ( f R f c ) ,     f t f c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0JaamOzamaa bmaapaqaa8qacaWGMbWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcpe GaayjkaiaawMcaaiabg2da9maaceaapaqaauaabeqaceaaaeaapeGa amOza8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaGGSaGaaiiOai aacckacaWGMbWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabgYda 8iaadAgapaWaaSbaaSqaa8qacaWGJbaapaqabaaakeaapeGaamOza8 aadaWgaaWcbaWdbiaadogaa8aabeaak8qacqGHRaWkdaqadaWdaeaa peWaaSGaa8aabaWdbiaaigdaa8aabaWdbiaadghapaWaaSbaaSqaa8 qacaaIXaaapaqabaaaaOWdbiabgkHiTiaadAgapaWaaSbaaSqaa8qa caWGJbaapaqabaaak8qacaGLOaGaayzkaaWaaSaaa8aabaWdbmaabm aapaqaa8qacaWGMbWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiab gkHiTiaadAgapaWaaSbaaSqaa8qacaWGJbaapaqabaaak8qacaGLOa Gaayzkaaaapaqaa8qadaqadaWdaeaapeGaamOza8aadaWgaaWcbaWd biaadkfaa8aabeaak8qacqGHsislcaWGMbWdamaaBaaaleaapeGaam 4yaaWdaeqaaaGcpeGaayjkaiaawMcaaaaacaGGSaGaaiiOaiaaccka caWGMbWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabgwMiZkaadA gapaWaaSbaaSqaa8qacaWGJbaapaqabaaaaaGcpeGaay5Eaaaaaa@6E51@
      ここで、 f R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadkfaa8aabeaaaaa@3828@ は破断時の合計ボイド体積率であり、この体積率では f * = 1 / q 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0JaaGymaiaa c+cacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa@3C7A@ が成り立ちます。


      図 4. 空洞の凝集
      剛性損失の影響を考慮するには、損傷変数 D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraaaa@36D5@ を次のように計算します。 (8)
      D = q 1   f * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebGaeyypa0JaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaGGGcGaamOza8aadaahaaWcbeqaa8qacaGGQaaaaaaa@3D14@
      実効損傷 f * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaGGQaaaaaaa@37F1@ はその破断値 1 / q 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac+cacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa @3985@ で正規化します。これによって 0     D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiaacckacqGHKjYOcaGGGcGaamiraiabgsMiJkaaigdaaaa@3DFC@ となります。応力テンソルは次の式で求められます。 (9)
      σ = ( 1 D )   C ˜   ε e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83Wdiabg2da9maabmaapaqaa8qacaaIXaGaeyOeI0Iaamir aaGaayjkaiaawMcaaiaacckaceWFdbWdayaaiaWdbiaacckacaWF1o WdamaaBaaaleaapeGaa8xzaaWdaeqaaaaa@4231@

      ここで、 C ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGab83qa8aagaacaaaa@36FA@ は弾性剛性マトリックスです。

      累積した合計損傷係数が限界値 f R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadkfaa8aabeaaaaa@3828@ に達すると材料は破断します。その結果、要素が削除されます。

  2. デフォルト設定の I l o c = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaadYgacaWGVbGaam4yaaWdaeqaaOWd biabg2da9iaaigdaaaa@3BDC@ では、積分点ごとに局所塑性ひずみ値を使用して、損傷変数が段階を追って計算されます。ただし、非局所正則化を使用することもできます。その場合は、ユーザーが設定した最大値以下のメッシュサイズ L e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@3821@ L e L e m a x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGHKjYOcaWG mbWdamaaDaaaleaapeGaamyzaaWdaeaapeGaamyBaiaadggacaWG4b aaaaaa@3EEB@ )を使用して、メッシュのサイズと方向に依存しない結果(メッシュの収束)がすべてのメッシュで得られます。その場合、この最大メッシュサイズ L e m a x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaqhaaWcbaWdbiaadwgaa8aabaWdbiaad2gacaWGHbGa amiEaaaaaaa@3B07@ は、結果がメッシュ収束である場合に使用する最大メッシュサイズです。
    いずれかの非局所定式化 ( I l o c > 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadMeapaWaaSbaaSqaa8qacaWGSbGaam4Baiaadogaa8aa beaak8qacqGH+aGpcaaIXaGaaiykaaaa@3D37@ を使用する場合、損傷の増分は、メッシュ全体で計算した節点の“非局所”塑性ひずみを正則化した値に依存します。節点における非局所塑性ひずみ ε p n l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaDaaaleaapeGaamiCaaWdaeaapeGaamOBaiaadYga aaaaaa@3AF7@ の計算では、この塑性ひずみ独自の勾配が考慮されると共に、以下の一組の方程式に従ってガウス点で計算した局所塑性ひずみ ε p が考慮されます。 (10)
        R l e n 2     Δ ε p n l     γ   ε p n l ˙   +   ( ε p ε p n l ) =   ζ ε p n l ¨       ε p n l   .   n = 0   o n o n         Ω Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqaceaaae aaqaaaaaaaaaWdbiaacckacaGGGcGaamOua8aadaqhaaWcbaWdbiaa dYgacaWGLbGaamOBaaWdaeaapeGaaGOmaaaakiaacckacaGGGcGaeu iLdqKaeqyTdu2damaaDaaaleaapeGaamiCaaWdaeaapeGaamOBaiaa dYgaaaGccaGGGcGaeyOeI0IaaiiOaiabeo7aNjaacckapaWaaCbiae aapeGaeqyTdu2damaaDaaaleaapeGaamiCaaWdaeaapeGaamOBaiaa dYgaaaaapaqabeaapeGaaiy2caaakiaacckacqGHRaWkcaGGGcWaae Waa8aabaWdbiabew7aL9aadaWgaaWcbaWdbiaadchaa8aabeaak8qa cqGHsislcqaH1oqzpaWaa0baaSqaa8qacaWGWbaapaqaa8qacaWGUb GaamiBaaaaaOGaayjkaiaawMcaaiabg2da9iaacckacqaH2oGEpaWa aCbiaeaapeGaeqyTdu2damaaDaaaleaapeGaamiCaaWdaeaapeGaam OBaiaadYgaaaaapaqabeaapeGaaiiQaaaakiaacckacaGGGcaapaqa a8qacuGHhis0paGbaSaapeGaaiiOaiabew7aL9aadaqhaaWcbaWdbi aadchaa8aabaWdbiaad6gacaWGSbaaaOGaaiiOaiaac6cacaGGGcGa bmOBa8aagaWca8qacqGH9aqpcaaIWaaaaiaacckapaqbaeqabiqaaa qaa8qacaWGVbGaamOBaaWdaeaapeGaam4Baiaad6gaaaGaaiiOaiaa cckacaGGGcGaaiiOa8aafaqabeGabaaabaWdbiabfM6axbWdaeaape Gaeu4KdCeaaaaa@8815@
    パラメータ γ および ζ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOTdOhaaa@37C9@ は自動的に設定されます。ユーザーは、パラメータRlenを設定する必要があります。このパラメータによって、非局所変数計算における影響半径に相当する非局所“内部長”が決まります。これにより、非局所正則化幅 L r = f ( R l e n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqpcaWG MbWaaeWaa8aabaWdbiaadkfapaWaaSbaaSqaa8qacaWGSbGaamyzai aad6gaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@3FFA@ のサイズが決定されます(図 5)。


    図 5. 非局所正則化の原理
    パラメータRlenの値を選択するには次の式に従います。(11)
    R l e n   3   L e m a x   π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadYgacaWGLbGaamOBaaWdaeqaaOWd biabgIKi7kaacckadaWcaaWdaeaapeGaaG4maiaacckacaWGmbWdam aaDaaaleaapeGaamyzaaWdaeaapeGaamyBaiaadggacaWG4baaaOGa aiiOaaWdaeaapeWaaOaaa8aabaWdbiabec8aWbWcbeaaaaaaaa@4749@
  3. I l o c = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaadYgacaWGVbGaam4yaaWdaeqaaOWd biabg2da9iaaikdaaaa@3BDD@ の場合は、非局所微細形態法が使用されます。この手法では、もう1つのパラメータHchiが必要です。このパラメータと非局所塑性ひずみ ε p n l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaDaaaleaapeGaamiCaaWdaeaapeGaamOBaiaadYga aaaaaa@3AF7@ を、次のように構成方程式に導入します。 (12)
    R c h i ( ε p , ε p n l )   =     R ( ε p )   H c h i   ( ε p n l   ε p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadogacaWGObGaamyAaaWdaeqaaOWd bmaabmaapaqaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWGWbaapaqaba GcpeGaaiilaiabew7aL9aadaqhaaWcbaWdbiaadchaa8aabaWdbiaa d6gacaWGSbaaaaGccaGLOaGaayzkaaGaaiiOaiabg2da9iaacckaca GGGcGaamOuamaabmaapaqaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWG Wbaapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiabgkHiTiaadIeapa WaaSbaaSqaa8qacaWGJbGaamiAaiaadMgaa8aabeaak8qacaGGGcWa aeWaa8aabaWdbiabew7aL9aadaqhaaWcbaWdbiaadchaa8aabaWdbi aad6gacaWGSbaaaOGaeyOeI0IaaiiOaiabew7aL9aadaWgaaWcbaWd biaadchaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@616F@

    ここで、 R ( ε p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWGWbaa paqabaaak8qacaGLOaGaayzkaaaaaa@3B9B@ は従来から使用されている加工硬化関数です。この新たに定義した微細形態加工硬化関数Rchiを、流動応力 σ y l d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyEaiaadYgacaWGKbaapaqabaaa aa@3B01@ の計算に導入します。パラメータHchiはペナルティパラメータになり、 H c h i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaOcaeaaaaaa aaa8qacaWGibWdamaaBaaaleaapeGaam4yaiaadIgacaWGPbaapaqa baGcpeGaeyOKH4QaeyOhIukaaa@3E19@ であれば、 ε p ε p n l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamiCaaWdaeqaaOWdbiabgkziUkab ew7aL9aadaqhaaWcbaWdbiaadchaa8aabaWdbiaad6gacaWGSbaaaa aa@3FF4@ および ε p n l ε p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaDaaaleaapeGaamiCaaWdaeaapeGaamOBaiaadYga aaGccqGHsgIRcqaH1oqzpaWaaSbaaSqaa8qacaWGWbaapaqabaaaaa@3FE4@ となり、したがって ε p ε p n l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamiCaaWdaeqaaOWdbiabgIKi7kab ew7aL9aadaqhaaWcbaWdbiaadchaa8aabaWdbiaad6gacaWGSbaaaa aa@3FB8@ となります。この手法は熱力学的に明確に定義されています。ただし、この手法では入力値の特定が困難で、それによってモデルの塑性挙動が変化します。このことから、Peerlings法( I l o c = 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaadYgacaWGVbGaam4yaaWdaeqaaOWd biabg2da9iaaiodaaaa@3BDE@ とする手法)の使用をお勧めします。

  4. I l o c = 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaadYgacaWGVbGaam4yaaWdaeqaaOWd biabg2da9iaaiodaaaa@3BDE@ の場合は、非局所なPeerlings法を使用します。この手法では、パラメータHchiを使用します。非局所長さRlenのみが使用されます。この手法は微細形態法より簡潔です。この手法では、軟化変数運動方程式に非局所塑性ひずみを導入しています(熱効果を考慮する場合は損傷と温度)。 (13)
    f ˙ t = A  ε p nl ˙ Void nucleation + ( 1 f t )Tr( ε p nl ˙ ) Void growth ( high triaxiality )   +   K w f t w( θ ) S : ε p nl ˙ σ eq Shear nucleation (low triaxility) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaGaamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da 98aadaagaaqaa8qacaWGbbGaaiiOa8aadaWfGaqaa8qacqaH1oqzpa Waa0baaSqaa8qacaWGWbaapaqaa8qacaWGUbGaamiBaaaaa8aabeqa a8qacaGGzlaaaaWdaeaapeGaaeOvaiaab+gacaqGPbGaaeizaiaabc kacaqGUbGaaeyDaiaabogacaqGSbGaaeyzaiaabggacaqG0bGaaeyA aiaab+gacaqGUbaak8aacaGL44papeGaey4kaSYaaGbaaeaadaqada WdaeaapeGaaGymaiabgkHiTiaadAgapaWaaSbaaSqaa8qacaWG0baa paqabaaak8qacaGLOaGaayzkaaGaamivaiaadkhadaqadaWdaeaada WfGaqaaGqad8qacaWF1oWdamaaDaaaleaapeGaa8hCaaWdaeaapeGa a8NBaiaa=XgaaaaapaqabeaapeGaaiy2caaaaOGaayjkaiaawMcaaa WcbaWdauaabeqaceaaaeaapeGaaeOvaiaab+gacaqGPbGaaeizaiaa bckacaqGNbGaaeOCaiaab+gacaqG3bGaaeiDaiaabIgaa8aabaWdbm aabmaapaqaa8qacaqGObGaaeyAaiaabEgacaqGObGaaeiOaiaabsha caqGYbGaaeyAaiaabggacaqG4bGaaeyAaiaabggacaqGSbGaaeyAai aabshacaqG5baacaGLOaGaayzkaaaaaaGccaGL44pacaGGGcGaaeiO aiaabUcacaqGGcGaaeiOa8aadaagaaqaa8qacaWGlbWdamaaBaaale aapeGaam4DaaWdaeqaaOWdbiaadAgapaWaaSbaaSqaa8qacaWG0baa paqabaGcpeGaam4Damaabmaapaqaa8qacqaH4oqCaiaawIcacaGLPa aadaWcaaWdaeaapeGaa83uaiaacckacaGG6aWdamaaxacabaWdbiaa =v7apaWaa0baaSqaa8qacaWFWbaapaqaa8qacaWFUbGaa8hBaaaaa8 aabeqaa8qacaGGzlaaaaGcpaqaa8qacqaHdpWCpaWaaSbaaSqaa8qa caWGLbGaamyCaaWdaeqaaaaaaqaabeqaa8qacaqGtbGaaeiAaiaabw gacaqGHbGaaeOCaiaabckacaqGUbGaaeyDaiaabogacaqGSbGaaeyz aiaabggacaqG0bGaaeyAaiaab+gacaqGUbaabaGaaeikaiaabYgaca qGVbGaae4DaiaabccacaqG0bGaaeOCaiaabMgacaqGHbGaaeiEaiaa bMgacaqGSbGaaeyAaiaabshacaqG5bGaaeykaaaak8aacaGL44paaa a@BB48@
    (14)
    T ˙ =ω( ε p nl ˙ ) η ρ C p   σ ¯ ¯ : ε p nl ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmiva8aagaGaa8qacqGH9aqpcqaHjpWDdaqadaWdaeaadaWfGaqa a8qacqaH1oqzpaWaa0baaSqaa8qacaWGWbaapaqaa8qacaWGUbGaam iBaaaaa8aabeqaa8qacaGGzlaaaaGccaGLOaGaayzkaaWaaSaaa8aa baWdbiabeE7aObWdaeaapeGaeqyWdiNaam4qa8aadaWgaaWcbaWdbi aadchaa8aabeaaaaGcpeGaaiiOa8aadaqdaaqaa8qacuaHdpWCpaGb aebaaaWdbiaacQdapaWaaCbiaeaaieWapeGaa8xTd8aadaqhaaWcba Wdbiaa=bhaa8aabaWdbiaa=5gacaWFSbaaaaWdaeqabaWdbiaacMTa aaaaaa@5288@

    この手法をお勧めする理由は、この手法では入力パラメータの特定が簡潔で、材料の塑性挙動が変化しないことにあります。

  5. 非局所正則化をシェル要素に使用すると、厚みの変化の計算で正則化が別途実行されることにより、局所化に伴う新たな問題の発生を回避できます。一般的な局所ケースでは(図 6)、シェル要素間の厚みの適合性を確保できません。その理由は、z方向の運動方程式が欠落しており、厚みの変化がガウス点で局所的に計算されることにあります。“厚みの範囲”でのひずみ増分に非局所塑性ひずみを導入することで、この適合性を回復できます(図 7)。 (15)
    Δ ε z z = ν 1 ν   ( Δ ε x x   Δ λ n l   n x x + Δ ε y y   Δ λ n l   n y y ) +   Δ λ n l   n z z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiabew7aL9aadaWgaaWcbaWdbiaadQhacaWG6baapaqabaGc peGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiabe27aUbWdaeaapeGaaG ymaiabgkHiTiabe27aUbaacaGGGcWaaeWaa8aabaWdbiabfs5aejab ew7aL9aadaWgaaWcbaWdbiaadIhacaWG4baapaqabaGcpeGaaiiOai abgkHiTiabfs5aejabeU7aS9aadaWgaaWcbaWdbiaad6gacaWGSbaa paqabaGcpeGaaiiOaiaad6gapaWaaSbaaSqaa8qacaWG4bGaamiEaa WdaeqaaOWdbiabgUcaRiabfs5aejabew7aL9aadaWgaaWcbaWdbiaa dMhacaWG5baapaqabaGcpeGaaiiOaiabgkHiTiabfs5aejabeU7aS9 aadaWgaaWcbaWdbiaad6gacaWGSbaapaqabaGcpeGaaiiOaiaad6ga paWaaSbaaSqaa8qacaWG5bGaamyEaaWdaeqaaaGcpeGaayjkaiaawM caaiabgUcaRiaacckacqqHuoarcqaH7oaBpaWaaSbaaSqaa8qacaWG UbGaamiBaaWdaeqaaOWdbiaacckacaWGUbWdamaaBaaaleaapeGaam OEaiaadQhaa8aabeaaaaa@7537@
    ここで、 Δ λ n l = f ( ε p n l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiabeU7aS9aadaWgaaWcbaWdbiaad6gacaWGSbaapaqabaGc peGaeyypa0JaamOzamaabmaapaqaa8qacqaH1oqzpaWaa0baaSqaa8 qacaWGWbaapaqaa8qacaWGUbGaamiBaaaaaOGaayjkaiaawMcaaaaa @43C0@ は非局所塑性乗数です。


    図 6. 横ひずみの不適合性(局所)


    図 7. 横ひずみの適合性(非局所)
    注: この最後の点は、特定したパラメータをソリッドとシェルに使用できることを意味します。両者で結果はまったく同じになるからです。
  6. ANIMファイルとH3Dファイルに特定の損傷出力DAMAを作成するには、次のように合計損傷をその破断値で正規化します。 (16)
    D= f t f R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9maalaaapaqaa8qacaWGMbWdamaaBaaaleaapeGa amiDaaWdaeqaaaGcbaWdbiaadAgapaWaaSbaaSqaa8qacaWGsbaapa qabaaaaaaa@3C7E@
  7. このモデルは、シェル要素とソリッド要素に適用する材料則LAW104でのみ使用できます。